Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN (10n+1,15n+2)
\(\Leftrightarrow10n+1⋮d;15n+2⋮d\)
\(\Leftrightarrow3\left(10n+1\right)⋮d;2\left(15n+2\right)⋮d\)
\(\Leftrightarrow30n+3⋮d;30n+4⋮d\)
\(\Leftrightarrow\left(30n+4\right)-\left(30n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{10n+1}{15n+2}\) là phân số tối giản
\(\RightarrowĐFCM\)
Với n nguyên :
( 10n + 1 ; 15 n + 2 ) = ( 10n + 1; ( 15n + 2 ) - ( 10 n + 1) ) = ( 10n + 1; 5n + 1 ) = ( 5n + 1 ; 5n ) = ( 5n ; 1 ) = 1
=> 10n + 1 và 15n + 2 là 2 số nguyên tố cùng nhau với n nguyên
=> 10n + 1/ 15n + 2 là phân số tối giản.
Gọi d là ƯCLN của 10n + 1 và 15n + 2 ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}10n+1⋮d\\15n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+1\right)⋮d\\2\left(15n+2\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}30n+3⋮d\\30n+4⋮d\end{cases}\Rightarrow\left(30n+4\right)-\left(30n+3\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{10n+1}{15n+2}\)là p/s tối giải.
gọi d=ƯCLN(10n+9;10n+8)
ta có 10n+9 chia hết cho d
10n+8 chia hết cho d
=>10n+9-10n-8 chia hết cho d
=>1chia hết cho d
=>d=1
=>\(\frac{10n+9}{10n+8}\)là p/s tối giản
\(\text{gọi d là ƯC(15n-7;9-20n)}\) (1)
\(\Rightarrow\hept{\begin{cases}15n-7⋮d\\9-20n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}20\left(15n-7\right)⋮d\\15\left(9-20n\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}300n-140⋮d\\135-300n⋮d\end{cases}}\)
\(\Rightarrow\left(300n-140\right)+\left(135-300n\right)⋮d\)
\(\Rightarrow300n-140+135-300n⋮d\)
\(\Rightarrow\left(300n-300n\right)-\left(140-135\right)⋮d\)
\(\Rightarrow0-5⋮d\)
\(\Rightarrow-5⋮d\)
\(\Rightarrow d\inƯ\left(-5\right)=\left\{-1;1;-5;5\right\}\) (2)
(1)(2) \(\RightarrowƯC\left(15n-7;9-20n\right)=\left\{-1;1;5;-5\right\}\)
mà \(15n-7⋮̸5\) vì \(15n⋮5;7⋮̸5\)
\(\RightarrowƯC\left(15n-7;9-20n\right)=\left\{-1;1\right\}\)
vậy phân số \(\frac{15n-7}{9-20n}\) là p\s tối giản \(\forall n\in Z\)
a) Gọi ƯC(2n+1,4n+6) = d ( d thuộc Z)
Suy ra 2n+1 chia hết cho d
4n+6 chia hết cho d
Suy ra 2(2n+1) chia hết cho d hay 4n+ 2 chia hết cho d
Suy ra 4n+ 6 - 4n - 2 chia hết cho d hay 4 chia hết cho d
Suy ra d thuộc {1;-1;2-2;4;-4}
Mà 2n + 1 không chia hết cho 2 và -2 nên d khác 2 và -2
4n+6 không chia hết cho 4 và -4 nên d khác 4 và -4
Suy ra d chỉ có thể là 1 và -1
Vậy 2n+1/4n+6 là phân số tối giản với mọi n
b)CÓ LẼ SAI ĐẦU BÀI
a) Gọi d là UCLN của (n+1;2n+3)
mà n + 1 \(⋮\)d nên 2n+3\(⋮\)d
\(\Rightarrow2.\left(n+1\right)⋮d\Leftrightarrow2n+2⋮d\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)
mink nghĩ vậy bạn ạ, làm vậy thôi
Gọi ƯCLN ( 4n + 3 ; 10n + 7 ) = d \(\left(d\inℕ^∗\right)\)
Ta có : \(4n+3⋮d\Rightarrow20n+15⋮d\)(1)
\(10n+7⋮d\Rightarrow20n+14⋮d\)(2)
Lấy (1) - (2) ta được : \(20n+15-20n-14⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi \(ƯCLN\left(4n+3;10n+7\right)=d\left(d\inℕ^∗\right)\)
Ta có:
\(\hept{\begin{cases}4n+3⋮d\\10n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\2\left(10n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+14⋮d\end{cases}}\)
\(\Rightarrow\left(20n+15\right)-\left(20n+14\right)⋮d\)
\(\Rightarrow20n+15-20n-14⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)(vì \(d\inℕ^∗\))
Do đó \(ƯCLN\left(4n+3;10n+7\right)=1\)
\(\Rightarrow\frac{4n+3}{10n+7}\)là phân số tối giản với mọi số tự nhiên n (điều phải chứng minh).
Tổng quát : \(\frac{a}{b}\)là phân số tối giản \(\LeftrightarrowƯCLN\left(a;b\right)=1\)(tức là 2 số a và b nguyên tố cùng nhau).
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
Chứng minh\(\frac{10n+1}{15n+2}\)là phân số tối giản
Gọi d = ƯCLN(10n + 1 ; 15n + 2 )
\(\Rightarrow\hept{\begin{cases}10n+1⋮d\\15n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+1\right)⋮d\\2\left(15n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+3⋮d\\30n+4⋮d\end{cases}}}\)
=> ( 30n + 4 ) - ( 30n + 3 ) chia hết cho d
=> 30n + 4 - 30n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(10n + 1 ; 15n + 2) = 1
=> \(\frac{10n+1}{15n+2}\)là phân số tối giản ( đpcm )