K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:
\(P=1+2+22+23+24+25+26+27\)

\(=(22+23)+24+(25+2)+(26+1)+27\)

\(=45+24+27+27+27=3.15+3.8+3.27\)

\(=3(15+8+27)\vdots 3\)

28 tháng 12 2018

thank

22 tháng 12 2021

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

23 tháng 12 2015

S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)

S=   3+45+51+51

S=3+3.15+3.17+3.17

S=3.(1+15+17.2): hết 3

tick nha nhanh nhất nè

2 tháng 1 2022

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

25 tháng 10 2022

vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))

Chúc bạn an toàn

s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]

s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]

s=[1+2] nhân[1+2+...+2 mũ 6

s=3 nhân [1+2+...+2 mũ 6]

=> s chia hết cho 3

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

3 tháng 8 2020

A = 2 + 22 + 23 + ... + 210 (10 số hạng)

 = (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)

= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)

= (1 + 2)(2 + 23 + ... + 29)

= 3(2 + 23 + ... + 29\(⋮\)3

=> A  \(⋮\)3

3 tháng 8 2020

Đề bài có bị sai không vậy ạ.Mình thấy hơi sai sai