K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

Gợi ý cách làm là nhóm 2 đầu 2 cuối r khai triển HĐT để nhìn cho dễ hơn thôi còn ko thì cứ khai triển hết ra là dc

19 tháng 5 2018

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

25 tháng 5 2018

Đúng rầu đấy

24 tháng 7 2021

Ta có a(a2 - bc) + b(b2 - ca) + c(c2 - ab) 

= a3 + b3 + c3 - 3abc

= (a + b)3 - 3ab(a + b) + c3 - 3abc

= [(a + b)3 + c3] - 3ab(a + b + c) 

= (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) 

= (a + b + c)(a2 +  b2 + c2 + 2ab - ac - bc - 3ab) 

= (a + b + c)(a2 +  b2 + c2 - ab - ac - bc)  (đpcm) 

26 tháng 5 2015

Dùng hằng đang thuc la ra~~~daif qua nen ngai viet

26 tháng 5 2015

p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r

31 tháng 7 2019

Em ko bik ạ

1 tháng 8 2019

Bài 1:

a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc

= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc

= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )

= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )

= ab.( a + b ) + c2.( a + b )v + c.( a + b)2

= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]

= ( a + b ).( ab + c2 + ac + bc )

= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]

= ( a + b ).[ a.( b + c ) + c.( b + c ) ]

= ( a + b ).( b + c ).( a + c )

b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )

= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b  ) - ( b + c ) ]

= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )

= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )

= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )

= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )

= ( a + b ).( b + c ).( a - c )

c) ( x2 + x )2 + 2.( x2 + x ) - 3

Đặt x2 + x = a

Khi đó đa thức trở thành:

a2 + 2a - 3

= a2 + 3a - a - 3

= a.( a + 3 ) - ( a + 3 )

= ( a - 1 ).( a - 3 )

\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )

B2

ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0

\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0

\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0

\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0

\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0

\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0

\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0

\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0

\(\Leftrightarrow\) a = b , b = c , a = c

\(\Rightarrow\) a = b = c

10 tháng 11 2020

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Đẳng thức xảy ra khi a = b = c

NV
14 tháng 5 2020

Áp dụng BĐT Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Cộng vế với vế:

\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Dấu "=" xảy ra khi \(a=b=c\)

6 tháng 12 2015

Ta có a+b+c=0=>a2+b2+c2+2ab+2bc+2ca=0

=>a2+b2+c2=-2(ab+bc+ca)=>(a2+b2+c2)2=(-2ab-2bc-2ca)2

=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)

=>a4+b4+c4= 2(a2b2+b2c2​+c2a2)

7 tháng 7 2019

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)