Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)
\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=1+\frac{1}{2}.6\)
\(=1+3\)
\(=4\)
~~ Bố thí cái li.ke ~~
Ta có :
A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64
=1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17 + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 )
=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32
A > 1 + 1/2 + 1/2 + 1/2 +1/2
=>A > 4
a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)
=\(\frac{1}{50}\)
\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)
\(\)
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
=> 1/2+1/3+…+1/63>2
t i c k nhé !! 5756876876978080
Ta có:
\(\frac{1}{2}=\frac{1}{2}\)
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+...+\frac{1}{8}>4.\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}>4.\frac{1}{2}=2\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha
3125 m2