K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

Đề vô lí tí ! 

Để em chứng minh vô lí ( Sai thì thôi nha đây chỉ là ý kiến riêng ) : 

\(16^n-1\text{ }⋮\text{ }17\) với 1 là 1 số tự nhiên chẵn

Gỉa sử số tự nhiên chẵn đó là 2 . Thì : 

\(16^n-1=16^2-1=256-1=255\text{ }⋮̸\text{ }7\)

\(\Rightarrow\text{ Đề sai}\)

5 tháng 9 2019

\(nchan\Rightarrow n=2k\left(k\inℕ\right)\)

\(16\equiv-1\left(mod17\right)\Rightarrow16^2\equiv1\left(mod17\right)\Rightarrow16^{2k}=16^n\equiv1\left(mod17\right)\)

\(16^n-1⋮17\)

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

20 tháng 1 2020

Bạn tham khảo tại đây nhé!! 

olm.vn/hoi-dap/detail/195135296784.html

20 tháng 1 2020

\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)

\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)

Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)\(k\inℕ\))

\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)

Vì \(k\)\(k-2\)\(k-1\)\(k+1\)là 4 số tự nhiên liên tiếp

\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)

Vì \(k\)\(k-1\)\(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)

mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)

\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)

hay \(n^4-4n^3-4n^2+16n⋮384\)

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

30 tháng 1 2021

Ta có: A = 20n + 16n - 3n - 1

Do n chẵn => n = 2k

Khi đó: A = 202k + 162k - 32k - 1

A = (202k - 1) + (256k - 9k

Do 202k - 1 \(⋮\)(20 - 1) = 19

 256k - 9k \(⋮\)(256 - 9) = 247 \(⋮\)19

=> A \(⋮\)19 (1)

Mặt khác, ta lại có: 

A = 202k + 162k - 32k - 1 = (202k - 32k) + (256k - 1)

Do 202k - 32k \(⋮\)(20 - 3) = 17

256k - 1 \(⋮\)(256 - 1)= 255 \(⋮\)17

=> A  \(⋮\)17 (2)

Mà (17; 19) = 1 => A \(⋮\)17.19 = 323 (đpcm)

30 tháng 1 2021

Vì n chẵn 

Đặt n = 2k (k \(\inℕ\))

Khi đó A = 20n + 16n - 3n - 1

= 202k + 162k - 32k - 1 

= 400k + 256k - 9k - 1

= (400k - 1) + (256k - 9k)

= (400 - 1)(400k - 1 + 400k - 2 + ... + 1) + (256 - 9)(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 399(400k - 1 + 400k - 2 + ... + 1) + 247(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 19.21.(400k - 1 + 400k - 2 + ... + 1) + 19.13(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 19.(21.(400k - 1 + 400k - 2 + ... + 1) + 13(256k - 1 + 256k - 2.9 + ... + 9k - 1)) \(⋮\)19 (1)

Lại có A = 400k + 256k - 9k - 1 

= (400k - 9k) + (256k - 1)

= (400 - 9)(400k - 1 + 400k - 2.9 + .... + 9k - 1) + (256 - 1)(256k - 1 + 256k - 2 + .... + 1)

= 391(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 255(256k - 1 + 256k - 2 + .... + 1)

= 17.23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 17.15(256k - 1 + 256k - 2 + .... + 1)

= 17.(23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 15(256k - 1 + 256k - 2 + .... + 1)) \(⋮\)17 (2)

Lại có ƯCLN(17;19) = 1 (3)

Từ (1)(2)(3) => A \(⋮17.19=323\)(ĐPCM)

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

23 tháng 1 2018

là 10 nhé