\(x^4+x^3+x^2+x+1=0\)vô nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

bạn đánh lên google đi có đó

26 tháng 2 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy phương trình vô nghiệm (ĐPCM)

b) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)

Có : \(\left(x^2-x\right)^2\ge0\)

        \(\left(x-1\right)^2\ge0\)

        \(\left(x-\frac{1}{2}\right)^2\ge0\)

          \(x^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)

Vậy phương trình vô nghiệm.(ĐPCM)

13 tháng 1 2019

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

20 tháng 2 2017

Câu 1/

\(x^6+x^5+x^4+x^3+x^2+x+1=0\)

Dễ thấy x = 1 không phải là nghiệm của phương trình

\(\Rightarrow\left(x-1\right)\left(x^6+x^5+x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow x^7-1=0\)

\(\Leftrightarrow x=1\) (loại)

Vậy pt vô nghiệm

Câu 2/

\(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(3x^2-3x+\frac{3}{4}\right)+\frac{5}{4}=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)

Vậy phương trình vô nghiệm

20 tháng 2 2017

cảm ơn

13 tháng 4 2017

2) \(x^4-x^2+1=0\)(1)

Đặt: t=x2, khi đó:

(1)\(\Leftrightarrow t^2-t+1=0\)

\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)

\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm