K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Nghĩ ra rồi :D

Số số hạng của dãy số trên là :

( 2n - 1 - 1 ) : 2 + 1

= 2n - 2 : 2 + 1

= 2 ( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng của dãy trên là :

( 2n - 1 + 1 ) . n : 2

= 2n . n : 2

= 2 . n^2 : 2

= n^2 ( đpcm )

học tốt ^^

9 tháng 8 2018

Đặt A = 1 + 3 + 5 +.... + ( 2n - 1 )  

Số số hạng của A là 

( 2n-1 - 1 ) : 2 + 1 = ( 2n-2 ) :2 + 1 = n-1+1 = n

Giá trị của A là 

(2n - 1 + 1 ) x n : 2 = 2n x n :2 = n2

Vậy A = n2  (đpcm)

31 tháng 5 2021

help mình vs plz

31 tháng 5 2021

.....

19 tháng 5 2016

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

19 tháng 5 2016

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

9 tháng 8 2018

Giải: Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…

  • Với n = 1: (1) ↔ 1 = 1²: mệnh đề này đúng. Vậy (1) đúng khi n = 1.
  • Giả sử (1) đúng khi n = k ↔ 1 + 3 + 5 + … + (2k – 1) = k² (2), ta chứng minh (1) cũng đúng khi n = k + 1 ↔ 1 + 3 + 5 + … + (2k – 1) + [2(k + 1)] = (k + 1)² (3)

Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]

                            = k² + 2k + 1 = (k + 1)²

                            = VP(3) (đpcm)

Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.

9 tháng 8 2018

Số số hạng của dãy số trên là:

( 2n - 1 - 1 ) : 2 +1 

= ( 2n - 2 ) : 2 + 1

= 2( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng của dãy số trên là:

( 2n - 1 + 1 ) . n : 2

= 2n.n : 2

= n.n

= n2

14 tháng 12 2021

\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)

Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)

Vậy ta đc đpcm

14 tháng 12 2021

5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8

Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên

30 tháng 1 2016

Sai đề.

VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91

2 tháng 12 2018

\(5^{n+2}+3^{n+2}-3^n-5^n=\left(5^{n+2}-5^n\right)+\left(3^{n+2}-3^n\right)=5^n\left(25-1\right)+3^n\left(9-1\right)\)

\(=5^n.24+3^n.8\)vì: \(n\in N;n\ne0\Rightarrow3^{n-1}\inℕ\)

\(=5^n.24+3^{n-1}.24=24\left(5^n+3^{n-1}\right)⋮24\)

16 tháng 2 2020

     5n + 2 + 3n + 2 - 3n -5n

= 5n. ( 52 -1 ) + 3n . ( 32 - 1 )

= 5n . 24 + 3n . 8

=  5n . 24 + 3n - 1 . 24

= 24 . ( 5 + 3n )

Vì 24\(⋮\)24

Nên 24 . ( 5 + 3n ) \(⋮\)24

Vậy  5n + 2 + 3n + 2 - 3n -5n \(⋮\)24