Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA⊥BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
b:Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
Suy ra: BC⊥CD
mà BC⊥AO
nên AO//CD
Tại 2 câu đầu khá dễ nên mình sẽ không chỉ ha
Gọi M là tâm đường tròn đường kính EB
Ta có : Tứ giác ACED là hình thoi
=> CE//AD
Mà AD vuông góc DB ( góc nội tiếp chắn nửa đường tròn )
Nên CE vuông góc DB
Xét tam giác BDC ta có :
BH là đường cao ( BH vuông góc CD)
CE là đường cao ( CE vuông góc DB)
BH cắt CE tại E
=> E là trực tâm tam giác BDC
=> DE vuông góc CB
=> góc EIB = 90 độ
=> I thuộc đường tròn M
Xét tứ giác IEHC ta có :
EIB = 90 độ
BHC= 90 độ
=>góc EIB = góc BHC
=> Tứ giác IEHC nội tiếp
=>góc EIH = góc ECH
Mà góc ECH = góc EDH = góc ADC ( tính chất hình thoi ACED)
góc ADC = góc ABC ( 2 góc nội tiếp chắn cung AC )
Nên góc EIH = góc ABC(1)
Ta có Tam giác EIB vuông tại I có M là trung điểm EB
=> tam giác IMC cân tại M
=> góc MBI = góc MIB (2)
(1) và (2) => góc EIH = góc MIB
Ta có góc EIM + góc MIB= 90
góc MIB = góc EIH
=> góc EIM + góc EIH =90
=> HIM = 90
Xét đường tròn tâm M ta có:
I thuộc (M)
HI vuông góc IM ( cmt )
=> HI là tiếp tuyến của đường tròn đường kính EB
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
a/
+ Vì BE // OD nên ta có ngay góc COD = góc DOB = góc OBE = góc OEB. Ta có :
góc COD + góc DOB + góc BOE = góc OBE + góc OEB + góc BOE = 180 độ
Vậy C,O,E thẳng hàng
+ Vì tam giác OCD cân tại O và OF vuông góc với CD nên OF đồng thời là đường phân giác => góc COF = góc FOD => Cung CF = cung FD
Do góc CED chắn cung CD và F là trung điểm của cung CD nên là đường phân giác góc CED.
a.
Do \(AC\perp BD\Rightarrow E\) là trung điểm BD
\(\Rightarrow OA\) là trung trực đoan BD \(\Rightarrow AB=AD\)
\(\widehat{DOA}=\widehat{COI}\) (đối đỉnh) \(\Rightarrow sđ\stackrel\frown{AD}=sđ\stackrel\frown{IC}\Rightarrow AD=IC\)
\(\Rightarrow AB=IC\)
b.
Do AC là đường kính nên \(\widehat{ABC}=\widehat{ADC}=90^0\) (nt chắn nửa đường tròn)
\(\Rightarrow\) Các tam giác ABC và ADC lần lượt vuông tại B và D
Áp dụng định lý Pitago:
\(\left(EA^2+EB^2\right)+\left(EC^2+ED^2\right)=AB^2+CD^2=AD^2+CD^2=AC^2=4R^2\)
c.
Áp dụng Pitago trong tam giác vuông OBE:
\(EB^2=OB^2-OE^2=R^2-\left(\dfrac{2R}{3}\right)^2=\dfrac{5R^2}{9}\Rightarrow BE=\dfrac{R\sqrt{5}}{3}\)
Trong tam giác vuông ABE:
\(AB^2=AE^2+EB^2=\left(R-\dfrac{2R}{3}\right)^2+\dfrac{5R^2}{9}=\dfrac{2R^2}{3}\)
\(\Rightarrow IC^2=AD^2=AB^2=\dfrac{2R^2}{3}\Rightarrow IC=AD=\dfrac{R\sqrt{6}}{3}\)
Trong tam giác vuông ADC:
\(DC=\sqrt{AC^2-AD^2}=\sqrt{\left(2R\right)^2-\dfrac{2R^2}{3}}=\dfrac{R\sqrt{30}}{3}\)
\(BD=2BE=\dfrac{2R\sqrt{5}}{3}\)
\(\Rightarrow IB=\sqrt{ID^2-BD^2}=\sqrt{\left(2R\right)^2-\left(\dfrac{2R\sqrt{5}}{3}\right)^2}=\dfrac{4R}{3}\)
ID là đường kính nên các tam giác IBD và ICD vuông tại B và D
\(S_{ABICD}=S_{\Delta ABD}+S_{\Delta IBD}+S_{\Delta ICD}\)
\(=\dfrac{1}{2}AE.BD+\dfrac{1}{2}IB.BD+\dfrac{1}{2}IC.DC=\dfrac{8R^2\sqrt{5}}{9}\)
Help✋✊