K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

17 tháng 6 2016

a) 29 - 1 = 83 - 1 = (8 - 1)(82+8+1) = 7*73 chia hết cho 73.

b) 56 - 104 = 54*(52 - 24) = 54 *(25 - 16) = 54 *9 chia hết cho 9.

19 tháng 8 2019

Cảm ơn bạn nhé!

22 tháng 8 2018

1)   bạn ktra lại đề

2)  \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)

3) 

a)  \(x^2+x-2=0\)

<=>  \(\left(x-1\right)\left(x+2\right)=0\)

<=>  \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy...

b)  \(3x^2+5x-8=0\)

<=>  \(\left(x-1\right)\left(3x+8\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

Vậy...

22 tháng 8 2018

2) \(x^6+2x^5+x^4-2x^3-2x^2+1\)

\(=\left(x^6+2x^5+x^4\right)-\left(2x^3+2x^2\right)+1\)

\(=\left(x^3+x^2\right)^2-2\left(x^3+x^2\right)+1\)

\(=\left(x^3+x^2-1\right)^2\)

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

13 tháng 8 2019

1) tìm x : 

5x. (x - 3 ) + 7.(x - 3 ) = 0

<=> ( x -3 ) . ( 5x +7 ) = 0

<=> x - 3 = 0 hoặc 5x + 7 = 0 

<=> x = 3 hoặc x = -7/5

Vậy x € { 3 ; -7/5 }

3 ) chứng mình rằng : 

1996 + 71995 + 71994 chia hết cho 57 

71996 + 71995 + 71994 

<=> 71994  . 72 + 71994 .7 + 71994

<=> 71994 . ( 7 + 7 + 1 ) 

<=> 71994 .  57 chia  hết cho 57 ( vì 57 chia hết cho 57 )  ( đ..p.c.m ) 

13 tháng 8 2019

Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x^2-8x-21=0\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)

Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)

\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)

TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)

TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)

C, tương tự 

Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)

\(=7^{1994}.57\)\(⋮\)\(7\)

\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)

29 tháng 3 2018

1)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}=0\)

\(\Leftrightarrow a\cdot\left(\dfrac{a}{b+c}+1\right)+b\cdot\left(\dfrac{b}{a+c}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-a-b-c=0\)

\(\Leftrightarrow a\cdot\dfrac{a+b+c}{b+c}+b\cdot\dfrac{a+b+c}{a+c}+c\cdot\dfrac{a+b+c}{a+b}-a-b-c=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(loai\right)\\\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\left(đpcm\right)\)

p/s:đề thiếu và dư đk

29 tháng 3 2018

Ai biết giải thì giúp mình mấy bài toán này với, mình xin cảm ơn rất nhiều

26 tháng 11 2016
Câu a Mk chưa giải đc B) ta có x4+ax2+1= (x-1)2.P(x) Cho x=1, ta có 1+a+1=0 =>a=-2 C)ta có 2x2+ax+5=(x+3).Q(x)+41 Cho x=-3 => 23-3a=41 =>a=-6