K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

Ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1 
=(n+n)(n2 +n -2) +1 (*) 
Đặt n2 +n =a 
(*)<=> a(a-2) +1= a2 -2a+1= (a-1)2 là số chính phương 
=>điều phải chứng minh 

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

23 tháng 11 2024

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

23 tháng 3 2016

Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n \(\in\) N). Theo đề bài ta có:

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3)(n + 1)(n + 2) + 1

= (n\(^2\) + 3n = t (t \(\in\) N) thì (*) = t(t + 2) + 1 = t\(^2\) + 2t + 1 = (t + 1)\(^2\)

= (n\(^2\) + 3n + 1)\(^2\)

Vì n \(\in\) N nên suy ra: (n\(^2\) + 3n + 1) \(\in\) N

=> Vậy n(n + 1)(n + 2)(n + 3) là số chính phương

9 tháng 2 2017

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

9 tháng 2 2017

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

14 tháng 12 2015

Gọi 4 số tự nhiên liên tiếp là n-1;n;n+1;n+2(n thuộc N*)

Theo đề ra ta có

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n\left(n+1\right)\right).\left(\left(n-1\right)\left(n+2\right)\right)+1\)

\(=\left(n^2+n\right)\left(n^2+n-2\right)+1\)

Đặt \(n^2+n-1=a\)

=>(a-1)(a+1)+1=a^2-1+1=a^2 là số chính phương

Tick nha

29 tháng 3 2015

Hồ Bảo Vy làm sai rồi, 15 có tận cùng là 5 nhưng có là số chính phương đâu

Dây mới là cách làm đúng:

Gọi 4 số đó là n; n+1; n+2; n+3

Theo đề bài có

n(n + 1)(n + 2)(n + 3) + 1

Nhóm n với n + 3 , n + 1 với n + 2, được

(n^2 + 3n)(n^2 + 3n + 2) + 1

Đặt n^2 + 3n + 1 = y => n^2 + 3n = y - 1 ; n^2 + 3n + 2 = y + 1

Có (y - 1)(y + 1) + 1

= y^2 - 1 + 1 = y^2 là số chính phương => điều phải chứng minh 

17 tháng 8 2018

de mak

20 tháng 3 2016

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.:))

23 tháng 3 2015

Cậu sai rồi: Tích của 4 số tự nhiên liếp cộng thêm 1 mới là số chính phương.