K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

Giả sử \(_{\Delta ABC\approx\Delta DEM}\) theo tỷ số k và có 2 đường cao, 2 cạnh tương ứng là h,a ; h',a'

 Ta có: \(\frac{\Delta ABC}{\Delta DEM}=\frac{ah}{2}\div\frac{a'h'}{2}=\frac{ah}{a'h'}=\frac{a}{a'}.\frac{h}{h'}=k.k=k^2\)

   => ĐPCM

5 tháng 3 2019

hình 49

Sabc=1/2ah.bc

Sa'b'c'=1/2a'h'.b'c'

tính tỉ sô Sabc/Sa'b'c=ah.bc/a'h'.b'c'

tam giác abc đồng dạng với tam giác a'b'c' theo tỉ số đồng dạng k suy ra bc/b'c'=ah/a'h'=k

suy ra Sabc/Sa'b'c'=bc/b'c' . ah/a'h'=k.k=k^2

suy ra đpcm

Thật ra là bạn viết tam giác nào trước cũng được, nhưng phải đúng theo thứ tự tên góc, cạnh tương ứng

21 tháng 2 2022

Mk cảm ơn :D

 

13 tháng 3 2017

 Giả sử tam giác ABC đồng dạng với tam giác A′B′C′ theo tỷ số a có hai đường cao và hai cạnh tương ứng là b,c và b',c'

\(\Rightarrow\)\(\frac{b}{b'}=\frac{c}{c'}=a\)

Như vậy ta sẽ có\(\frac{S_{ABC}}{S_{A'B'C'}}\)\(=\frac{b.c}{b'.c'}\)\(=\frac{b}{b'}.\frac{c}{c'}\)\(=a.a\)\(=a^2\)

Vậy tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.

Đề sai rồi bạn

13 tháng 2 2022

undefined

Chúc em học tốt

13 tháng 2 2022

giải hay mà chữ chx đẹp , rèn lại cho dễ nhìn hưn nhe:>

13 tháng 2 2022

Tham khảo: Toán - [Lớp 8] Chứng minh tỉ số diện tích của hai tam giác đồng dạng thì bằng bình phương tỉ số đồng dạng. | Cộng đồng Học sinh Việt Nam - HOCMAI Forum

13 tháng 2 2022

tk:

GT ΔABC∼ΔA′B′C′  theo tỉ số k
KL: S ABC SA′B′C′
bg:
Chứng minh tgABC đồng dạng vớ tg A'B'H' để suy ra: AH/A'H' = AB/A'B' = k
SABCSA′B′C′1/2AH.BC1/2A′H′.B′C′=k.k=k2

4 tháng 5 2016

nếu bạn muốn họ trả lời nhanh thì bạn tốt nhật ko nên bỏ chữ đâu nha

4 tháng 5 2016

là sao bạn k hiểu