K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi tam giác đó là ΔBAC cân tại A có BM và CN là hai đường trung tuyến

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔBAC cân tại A)

nên AN=NB=AM=MC

Xét ΔAMB và ΔANC có 

AM=AN(cmt)

\(\widehat{BAM}\) chung

AB=AC(ΔABC cân tại A)

Do đó: ΔAMB=ΔANC(c-g-c)

Suy ra: BM=CN(hai cạnh tương ứng)

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

19 tháng 2 2020

dễ ẹc!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

19 tháng 2 2020

giúp mk với

17 tháng 3 2016

B A C M N \

Do Tam giác ABC cân tại A => AB =AC => 1/2AB=1/2AC=> AM=BM=AN=CN

Xét tam giác CMB và tam giác BNC có :

BC chung

MB=NC

Góc MBC = góc NCB( tam giác ABC cân tại A)

=> tam giác CMB=tam giác BNC

17 tháng 3 2016

=> BM = CN ( cặp cạnh tương ứng)

Bạn tự vẽ hình nha!

a.

BN = AN = AB/2 (CN là đường trung tuyến của tam giác ABC => N là trung điểm của AB)

CM = AM = AC/2 (BM là đường trung tuyến của tam giác ABC => M là trung điểm của AC)

mà AC = AB (tam giác ABC cân tại A)

=> BN = CM

Xét tam giác BNC và tam giác CMB có:

BN = CM (chứng minh trên)

ABC = ACB (tam giác ABC cân tại A)

BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

b.

Tam giác BNC = Tam giác CMB (theo câu a)

=> KBC = KCB (2 góc tương ứng)

=> Tam giác KBC cân tại K

c.

Tam giác KBC cân tại K

=> BK = CK 

=> BK + CK = 2BK = 4KM

mà BK + CK > BC (bất đẳng thức tam giác)

=> BC < 4KM

25 tháng 4 2016

a,Vì CN và BM lần lượt là đường trung tuyến của góc B và C nên N và M lần lượt là trung điểm của AB và AC

\(\Rightarrow\) AN=BN=AB/2 và AM=MC=AC/2 mà AB=AC(tam giác ABC cân tại A)nên suy ra NB=MC

Xét tam giác BNC và tam giác CMB có: NB=MC(cmt);góc ABC= góc ACB(do tam giác ABC cân);cạnh BC chung

\(\Rightarrow\)tam giác BNC=tam giác CMB

#\(N\)

`a,` `GT: AB = AC,` \(\widehat{B}=\widehat{C}\)

`CM: BB' = C``C'`

`BB'` là đường trung tuyến

`-> B'` là trung điểm của `AC`

`-> AB' = B'C` 

`C``C'` là đường trung tuyến

`-> C'` là trung điểm của `AB`

`-> AC' = C'B`

Tam giác `ABC` cân tại `A`

`-> AB = AC`

`-> AC' = AB' = C'B = B'C`

Xét Tam giác `BB'C` và Tam giác `C``C'B:`

`C'B = B'C`

\(\widehat{B}=\widehat{C}\)

`BC` chung

`=>` Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`=> BB' = C``C' (2` cạnh tương ứng `) (đpcm)`

`b, GT: AB' = B'C ; AC'=C'B ; C``C' = BB'`

`KL:` Tam giác `ABC` cân

`BB', C``C'` là đường trung tuyến

giả sử: `BB'` cắt `C``C'` tại `G`

`-> G` là trọng tâm của Tam giác `ABC`

`-> GB = 2/3 BB'`

`-> GC = 2/3 C``C'`

`BB' = C``C' -> GB = GC`

`->` Tam giác `GBC` cân tại `G`

`->`\(\widehat{B_1}=\widehat{C_1}\) 

Xét Tam giác `BB'C` và Tam giác `C``C'B` có:

`BB' = C``C'`

\(\widehat{B_1}=\widehat{C_1}\)

`BC` chung

`=>`Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`-> BC' = B'C`

`-> 1/2 AB = 1/2 AC`

`-> AB = AC`

`->` Tam giác `ABC` cân tại `A (đpcm)`.loading...

loading...

16 tháng 2 2023

giúp mình với

 

19 tháng 9 2023

Gọi BM, CN là 2 đường trung tuyến của \(\Delta ABC\)

\( \Rightarrow \)MA = MC = \(\dfrac{1}{2}\)AC; NA = NB = \(\dfrac{1}{2}\)AB

Vì \(\Delta ABC\) cân tại A nên AB = AC ( tính chất)

Do đó, AM = MC = NA = NB

Xét \(\Delta \)ANC và \(\Delta \)AMB, ta có:

AN = AM

\(\widehat A\) chung

AC = AB

\( \Rightarrow \)\(\Delta \)ANC = \(\Delta \)AMB (c.g.c)

\( \Rightarrow \) NC = MB ( 2 cạnh tương ứng)

Vậy 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân là hai đoạn thẳng bằng nhau.

Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)

\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).

\(\Rightarrow  GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\) ( tính chất đường trung tuyến trong tam giác)

Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)

Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).

\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).

Xét \(∆BCN\) và \(∆CBM\) có: 

+) \(BC\) là cạnh chung

+) \(CN = BM\) (giả thiết)

+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)

Suy ra \(∆BCN = ∆CBM\) (c.g.c)

 \(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).

\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân)