Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}= \sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{3}.\sqrt{5}+3}\\ =\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\)
+) \(\left(\sqrt{4}-\sqrt{3}\right)^2=4-2\sqrt{4\cdot3}+3=7-2\sqrt{7}=\sqrt{49}-\sqrt{48}\)
+) \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
\(=4\sqrt{2}-6\sqrt{6}+9-4\sqrt{2}+6\sqrt{6}\)
\(=9\)
+) Sửa : \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
Bạn xem lại đề. Biểu thức trong căn thứ 2 âm nên biểu thức B không tồn tại. Có phải số 8 bạn nên sửa thành 9?
\(\sqrt{13-2\sqrt{42}}=\sqrt{6-2\sqrt{6}.\sqrt{7}+7}=\sqrt{\left(\sqrt{6}-\sqrt{7}\right)^2}=\left|\sqrt{6}-\sqrt{7}\right|=\sqrt{7}-\sqrt{6}\)
\(\sqrt{46+6\sqrt{5}}=\sqrt{45+6\sqrt{5}+1}=\sqrt{3^2.5+6\sqrt{5}+1}=\sqrt{3^2.5+2.3.\sqrt{5}+1^2}=\sqrt{\left(3.\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)
\(\sqrt{12-3\sqrt{15}}=\sqrt{3}\sqrt{4-\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{8-2\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{3-2\sqrt{15}+5}=\sqrt{\frac{3}{2}}.\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\frac{3}{2}}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{15}+5}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{3}\sqrt{5}+5}-\sqrt{3+2\sqrt{3}\sqrt{5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}=-2\sqrt{3}\)
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{\frac{1}{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{5}-\sqrt{5}+1\right)=\sqrt{\frac{1}{2}}.2=\sqrt{\frac{4}{2}}=\sqrt{2}\)
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
đề sai