K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\\ =\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\\ =\sqrt{2.\left(n+1\right).n:2-n}\\ =\sqrt{n\left(n+1\right)-n}\\ =\sqrt{n^2+n-n}\\ =\sqrt{n^2}\\ =n\)

28 tháng 2 2017

Ta có:1+2+3+..+(n-1)

=>số số hạng của tổng trên là:\(\frac{\left(n-1\right)-1}{1}\) +1=n-2+1=n-1

vậy:1+2+3+..+(n-1)=[(n-1)+1].(n-1):2=n(n-1):2

=>\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+..+3+2+1}\)

\(\sqrt{n\left(n-1\right):2.2+n}\)

\(\sqrt{n\left(n-1\right)+n}\)

\(\sqrt{n.n-n+n}\)

\(\sqrt{\sqrt{n}}\)=n

vậy\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+..+3+2+1}\)

=n(dpcm)

28 tháng 2 2017

Khó quá à =.= bucminh

25 tháng 11 2015

Đề có cho n >=0 ko bạn?

\(\sqrt{1+2+3+....+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(=\sqrt{2.\left[1+2+3+...+\left(n-1\right)\right]+n}=\sqrt{2.\frac{\left[\left(n-1\right)+1\right]\left(n-1\right)}{2}+n}\)

\(=\sqrt{\left(n-1+1\right)\left(n-1\right)+n}=\sqrt{n.\left(n-1\right)+n}=\sqrt{n^2-n+n}=n\)

15 tháng 1 2022

\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)

\(=\sqrt{2.\left(n+1\right).n:2-n}\)

\(=\sqrt{n\left(n+1\right)-n}\)

\(=\sqrt{n^2+n-n}\)

\(=\sqrt{n^2}\)

\(=n\)

20 tháng 9 2015

Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}\) . Vì \(0