\(SinA+SinB+SinC< =\frac{3\sqrt{3}}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:

Áp dụng 1 số công thức lượng giác:
\(\sin A=\frac{\sin B+\sin C}{\cos B+\cos C}=\frac{2\sin (\frac{B+C}{2})\cos (\frac{B-C}{2})}{2\cos (\frac{B+C}{2})\cos (\frac{B-C}{2})}=\frac{\sin \frac{B+C}{2}}{\cos \frac{B+C}{2}}\)

\(=\tan \frac{B+C}{2}=\tan (\frac{\pi-A}{2})=\cot \frac{A}{2}\)

\(\Leftrightarrow 2\sin \frac{A}{2}\cos \frac{A}{2}=\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}\) (trong tam giác, \(\widehat{A}\neq 0\rightarrow \sin \frac{A}{2}\neq 0)\)

\(\Leftrightarrow \cos \frac{A}{2}(2\sin^2 \frac{A}{2}-1)=0\)

\(\Rightarrow \left[\begin{matrix} \cos \frac{A}{2}=0\rightarrow \frac{\widehat{A}}{2}=\frac{\pi}{2}\rightarrow \widehat{A}=\pi (\text{vô lý})\\ \sin \frac{A}{2}=\frac{1}{\sqrt{2}}\rightarrow \frac{\widehat{A}}{2}=\frac{\pi}{4}\rightarrow \widehat{A}=\frac{1}{2}\pi=90^0 \end{matrix}\right.\)

Do đó tam giác ABC vuông tại A

NV
15 tháng 4 2019

\(sinA+sinB-sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}-sinC\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}-2sin\frac{C}{2}cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}sin\frac{A}{2}sin\frac{B}{2}\)

NV
6 tháng 6 2020

Đặt \(\left(\frac{1}{sinA};\frac{1}{sinB};\frac{1}{sinC}\right)=\left(a;b;c\right)\Rightarrow a;b;c>0\), áp dụng BĐT AM-GM

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{3}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế và rút gọn: \(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(\Leftrightarrow\left(1+\frac{1}{sinA}\right)\left(1+\frac{1}{sinB}\right)\left(1+\frac{1}{sinC}\right)\ge\left(1+\frac{1}{\sqrt[3]{sinA.sinB.sinC}}\right)^3\)

Dấu "=" xảy ra khi và chỉ khi \(\frac{1}{sinA}=\frac{1}{sinB}=\frac{1}{sinC}\Leftrightarrow\)

\(A=B=C=60^0\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Thay dấu "=" thành $\geq $ ta được BĐT Holder. Dấu "=" xác định tại $\sin A=\sin B=\sin C$ hay tam giác $ABC$ đều.

Chứng minh cụ thể như sau:

\(\frac{1}{1+\frac{1}{\sin A}}+\frac{1}{1+\frac{1}{\sin B}}+\frac{1}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

\(\frac{\frac{1}{\sin A}}{1+\frac{1}{\sin A}}+\frac{\frac{1}{\sin B}}{1+\frac{1}{\sin B}}+\frac{\frac{1}{\sin C}}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{\frac{1}{\sin A\sin B\sin C}}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

Cộng theo vế và rút gọn:

\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}}}{\sqrt[3]{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

\(\Rightarrow (1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})\geq (1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}})^3\)

Dấu "=" xảy ra (như đề bài) khi \(\sin A=\sin B=\sin C\Rightarrow \angle A=\angle B=\angle C=60^0\)

30 tháng 6 2019

phức tạp thật!

14 tháng 10 2017

oh my gut : O

NV
15 tháng 5 2020

\(sin\left(\frac{\pi}{7}\right)H=sin\left(\frac{\pi}{7}\right)cos\left(\frac{2\pi}{7}\right)+sin\left(\frac{\pi}{7}\right)cos\left(\frac{4\pi}{7}\right)+sin\left(\frac{\pi}{7}\right)cos\left(\frac{6\pi}{7}\right)\)

\(=\frac{1}{2}\left[sin\left(\frac{3\pi}{7}\right)-sin\left(\frac{\pi}{7}\right)+sin\left(\frac{5\pi}{7}\right)-sin\left(\frac{3\pi}{7}\right)+sin\pi-sin\left(\frac{5\pi}{7}\right)\right]\)

\(=-\frac{1}{2}sin\left(\frac{\pi}{7}\right)\)

\(\Rightarrow H=-\frac{1}{2}\)

\(sinA+sinB+sinC=2sin\left(\frac{A+B}{2}\right)cos\left(\frac{A-B}{2}\right)+2sin\left(\frac{C}{2}\right)cos\left(\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}cos\left(\frac{A-B}{2}\right)+2cos\left(\frac{A+B}{2}\right)cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left[cos\left(\frac{A-B}{2}\right)+cos\left(\frac{A+B}{2}\right)\right]\)

\(=4cos\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}\)