Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};......;\frac{1}{100^2}< \frac{1}{99.100}\)
\(=>A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
\(=>A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)
Bạn xem lời giải của mình nhé:
Giải:
Gọi \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(\frac{1}{3^2}< \frac{1}{3.4}\\ \frac{1}{4^2}< \frac{1}{4.5}\\ ...\\ \frac{1}{100^2}< \frac{1}{99.100}\\ \Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{100}\\ \frac{1}{3}< \frac{1}{2}\Rightarrow\frac{1}{3}-\frac{1}{100}< \frac{1}{2}\\ \Rightarrow A< \frac{1}{2}\)
Chúc bạn học tốt!
B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<1\)
\(B<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}\)
\(B<1-\frac{1}{8}<1\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(B< 1-\frac{1}{8}< 1\)
Ta có:
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)
\(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=> đpcm
\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.......+\frac{1}{100^2}<\frac{1}{2}\)
\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+........+\frac{1}{100^2}\)<\(\frac{1}{0.2}+\frac{1}{2.4}+\frac{1}{4.6}+.......+\frac{1}{98.100}\)
\(S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<\frac{50}{100}=\frac{49}{100}<\frac{1}{2}\)
Vậy \(\frac{49}{100}<\frac{1}{2}\)
Ta có 1/22<1/2*3
1/42<1/3*4
. . .
1/1002<1/99*100
=> S<1/2*3+1/3*4+...+1/99*100
=> S<1/2-1/3+1/3-1/4+...+1/99-1/100
=>S<1/2-1/100
=>S<49/100
Mà 49/100<1/2
=>S<1/2