Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
voi moi n 1000^n-1 luon chia het cho 9
voi moi n<>0 2010^n-1 ko chia het cho 9=>dpcm
Kết quả ở bài của tớ chia hết cho 2 và 3 mà 1 số chia hết cho 6 thì phải chia hết cho 2 và 3.
Vập M chia hết cho 6.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Vì \(a^n\) chia hết cho 5
Nên \(a^1\) chia hết cho 5
Hay a chia hết cho 5
suy ra \(a^2\) chia hết cho 25
Mà 150 cũng chia hết cho 125
Do đó \(a^2+150\) chia hết cho 25