K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2021

\(\left(a^2+b^2\right)^2=\left[\left(a-b\right)^2+2ab\right]^2=\left[\left(a-b\right)^2+2\right]^2\ge8\left(a-b\right)^2\) (đpcm)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=\sqrt{2}\\ab=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(\dfrac{\sqrt{6}+\sqrt{2}}{2};\dfrac{\sqrt{6}-\sqrt{2}}{2}\right);\left(\dfrac{\sqrt{2}-\sqrt{6}}{2};-\dfrac{\sqrt{2}+\sqrt{6}}{2}\right)\)

21 tháng 9 2021

'';'' là gì vậy ạ

25 tháng 8 2017

Đề sai rồi

đặt b+c=x;c+a=y;a+b=z

sau đó viết lại bđt rồi dùng cô si,nếu ko làm đc thì mình sẽ viết cụ thể cho

24 tháng 7 2023

Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)

\(\Rightarrow x+y+z\ge0\)

\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)

=> Đẳng thức (1) luôn đúng với mọi x

Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)

và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

24 tháng 9 2017

Biến đổi VP ta có :

\(VP=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)

\(=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)

\(=a^5+a.\left(ab\right)^2+b.\left(ab\right)^2+b^5-\left(a+b\right)\)

\(=a^5+a+b+b^5-\left(a+b\right)\) (vì \(ab=1\))

\(=a^5+b^5=VT\)(đpcm)

24 tháng 9 2017

Biến đổi vế phải :
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right) \)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)(vì ab=1)

\(=a^5+b^5\)