\(\left(n^2+n-1\right)^2-1\) chia hết cho 24 với mọi số nguyên
b)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

a) Ta có: (n2 + n - 1)2 - 1

= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)

= (n2 + n)(n2 + n - 2)

= n(n + 1)(n2 + 2n - n - 2)

= n(n+ 1)[n(n + 2) - (n + 2)]

= n(n + 1)(n - 1)(n + 2)

Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp 

nên 1 thừa số chia hết cho 2

        1 thừa số chia hết cho 3

          1 thừa số chia hết cho 4

mà (2, 3, 4) = 1

=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24

=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)\(\in\)Z

b) Do n chẵn => n có dạng 2k (k \(\in\)Z)

Khi đó, ta có: n3 + 6n2 + 8n

= (2k)3 + 6.(2k)2 + 8.2k

= 8k3 + 24k2 + 16k

= 8k(k2 + 3k + 2)

= 8k(k2 + 2k + k + 2)

= 8k[k(k + 2) + (k + 2)]

= 8k(k + 1)(k + 2)

Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp

nên 1 thừa số chia hết cho 2

   1 thừa số chia hết cho 3

=> k(k + 1)(k + 2) \(⋮\)2.3 = 6

=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48

Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn

23 tháng 1 2018

là 10 nhé

21 tháng 10 2017

b) n3 + 6n2 + 8n

= n( n2 + 6n + 8)

= n( n2 + 2n + 4n + 8)

= n[ n( n +2) + 4( n +2)]

= n( n +2)( n + 4)

Do n chẵn nên ta đặt : 2k = n

Ta có : 2k( 2k +2)( 2k +4)

= 2k.2( k +1)2( k +2)

= 8k( k + 1)( k +2)

Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3

Suy ra : k( k + 1)( k +2) chia hết cho 6

Suy ra : 8k( k + 1)( k +2) chia hết cho 48


16 tháng 3 2019

a) 24= 2.3.4

(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)

=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)

Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4

Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

14 tháng 10 2017

\(a,n^3+6n^2+8n\)

\(=n\left(n^2+6n+8\right)\)

\(=n\left(n^2+4n+2n+8\right)\)

\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)

\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)

\(=n\left(n+2\right)\left(n+4\right)\)

Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48

b, tương tự a

5 tháng 7 2016

xem lại câu a nhé bạn

25 tháng 4 2018

Bài 3: mk làm theo cách này: từ A = 8k(k2+503)

Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)

\(=k\left(k^2-1+6\right)+6.83k\)

\(=k\left(k^2-1\right)+6k+6.83k\)

\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)

\(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6

Vậy A \(⋮\) 8.6=48

25 tháng 4 2018

í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

25 tháng 6 2019

a)

\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)

b)

\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)

c)

\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)