K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

a)ta đặt A=111....111(9c/s 1)=>A chia hết cho 9 và được B

Số có 81 chữ số 1 cấu tạo bởi AAAA.....A(9 lần A)

Khi đem chia nó cho 9 được BBB....BB (9 lần B)

Tổng các chữ số của kết quả trên là 9xB chia hết cho 9

Nên số 111.....111(81 c/s 1) chia hết cho 9=> chia hết cho (9 mũ 2)=> chia hết cho 81

Vậy số gồm 81 chữ số 1 thì chia hết cho 81

b)...................................

Chọn tớ đi thì tớ giải cho

Tớ tạm thời chưa nhớ ra nha

18 tháng 12 2017

chọn mình đi bạn

23 tháng 10 2019

b. Câu hỏi của Vu Khanh Linh - Toán lớp 6 - Học toán với OnlineMath

29 tháng 10 2017

a ) Gọi \(A=111......1\left(81\text{chữ số}\right);B=111....1\left(9\text{chữ số}\right)\text{Đặt}C=A:B\text{thì }:\)

\(C=100.....0\left(8\text{ chữ số0}\right)1000.....0\left(8\text{ chữ số0}\right)1000...0000\left(8\text{ chữ số}0\right)1\)

gồm 9 chữ số 1 và 64 chữ số 0 , chia hết cho 9

Ta thấy : A =B . C mà B và C cùng chia hết cho 9, vậy A chia hết cho 81 ( đpcm )

b ) Gọi \(A=1010.....10\left(27\text{cặp chữ số 10}\right),B=1010.....10\left(9\text{cặp chữ số 10}\right)\)

Đặt \(C=A:B,\text{chứng minh rằng}B⋮9;C⋮3\Rightarrow C⋮27\left(đpcm\right)\)

9 tháng 11 2015

Có: 27 cặp số 10 = 10101010.....1010

=> có 27 chữ số 0 và 27 chữ số 1

mà 1.27 = 27 chia hết cho 3 và 9

=>27 cặp chữ số 10 thì chia hết cho 27

 

 

31 tháng 10 2015

27 chữ số 1 có dạng:11111....11111(27 chữ số 1)

mà 111111.....111111chia hết cho 27 =>11111....111 chia hết cho 3 và 9

=> 1+1+1+1+...+1+1chia hết cho 3 và 9 hay 27 chia hết cho 3 và 9

vậy 111111..1111 chia hết cho 27

 

tương tự

Gọi A=11...1⏟,B=11...1⏟. Đặt C=A:B thì
        81 chữ số      9 chữ số
C=10...0⏟10...0⏟1...0...0⏟1 gồm 9 chữ số 1 và 64 chữ số 0, chia hết cho 9.
 8 chữ số   8 chữ số   8 chữ số
Ta thấy A=B.C mà B và C cùng chia hết cho 9, vậy A chia hết cho 81.

9 tháng 9 2023

 Số đã cho được viết là N = 111...11 (81 chữ số 1)

\(N=10^{80}+10^{79}+...+10^1+10^0\)

\(\Rightarrow10N=10^{81}+10^{80}+...+10^2+10^1\)

\(\Rightarrow9N=10^{81}-1\)

\(\Rightarrow N=\dfrac{10^{81}-1}{9}\)

 Ta chứng minh \(\dfrac{10^{81}-1}{9}⋮81=3^4\) hay \(10^{81}-1⋮3^6\)

 Kí hiệu \(v_p\left(n\right)\) là số mũ đúng của số nguyên tố p trong phân tích tiêu chuẩn của n.

Sử dụng định lý LTE, ta có:

 \(v_3\left(10^{81}-1\right)=v_3\left(10-1\right)+v_3\left(81\right)\) \(=2+4=6\)

 Do đó \(10^{81}-1⋮3^6\), ta có đpcm.

 (Bạn có thể tìm hiểu thêm về định lý LTE trên mạng nhưng bạn sẽ không được dùng nó vào chương trình lớp 6 đâu. Bạn có thể cm điều này bằng cách phân tích \(10^{81}-1\) thành tích của các số nhưng sẽ hơi lâu.)

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Lời giải:

Ta có:

\(\underbrace{111....1}_{81}=\underbrace{11...1}_{9}\times 10^{72}+\underbrace{11...1}_{9}\times 10^{63}+\underbrace{111...1}_{9}\times 10^{54}+....+\underbrace{11...1}_{9}\times 10^0\)

\(=\underbrace{111....1}_{9}(10^{72}+10^{63}+...+10^0)\)

\(=\underbrace{111...1}_{9}\times 1\underbrace{0...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\)

Ta thấy thừa số thứ nhất chia hết cho 9 (do tổng các chữ số bằng 9). Thừa số thứ 2 cũng chia hết cho 9 (do tổng các chữ số chia hết cho 9)

Do đó tích 2 thừa số trên chia hết cho $9.9=81$

Ta có điều phải chứng minh.

9 tháng 9 2023

Số đã cho có thể viết là \(N=101010...10\) (27 cụm 10)

Do đó \(N=10^{53}+10^{51}+10^{49}...+10^1\)

\(\Rightarrow100N=10^{55}+10^{53}+10^{51}+...+10^3\)

\(\Rightarrow99N=10^{55}-10\)

\(\Rightarrow N=\dfrac{10^{55}-10}{99}\)

Ta sẽ chứng minh \(\dfrac{10^{55}-10}{99}⋮27\) hay \(10^{55}-10⋮2673\)

Mà \(2673=3^5.11\) nên ta cần cm \(10^{55}-10⋮243=3^5\) và \(10^{55}-10⋮11\)

*) Chứng minh \(10^{55}-10⋮11\)

 Ta thấy 10 chia 11 dư \(-1\) nên \(10^{54}\) chia 10 dư 1. Từ đó \(10^{54}-1⋮11\) \(\Rightarrow10^{55}-10⋮11\)

*) Chứng minh \(10^{55}-10⋮3^5\)

Điều này tương đương với \(10^{54}-1⋮3^5\)

Ta có \(10^{54}-1=\left(10^{27}-1\right)\left(10^{27}+1\right)\)

 \(=\left(10^9-1\right)\left(10^{18}+10^9+1\right)\left(10^{27}+1\right)\)

 \(=\left(10^3-1\right)\left(10^6+10^3+1\right)\left(10^{18}+10^9+1\right)\left(10^{27}+1\right)\)

\(=\left(10-1\right)\left(10^2+10+1\right)\left(10^6+10^3+1\right)\left(10^8+10^9+1\right)\left(10^{27}+1\right)\)

 Ta thấy \(10-1=9=3^2\)\(10^2+10+1,10^6+10^3+1,10^{18}+10^9+1⋮3\) do chúng đều có tổng các chữ số là 3. Từ đó \(10^{54}-1⋮3^5\)

 Vậy, ta có đpcm.