K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a - (b - c) = (a - b) + c = (a + c) - b

Ta có: a - (b - c) = a - b + c = (a - b) + c = ( a + c) - b

Học tốt bạn nhé

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:

a.

$(a-b)-(c-d)+(b+c)=a-b-c+d+b+c=(a+d)+(-b+b)+(-c+c)$

$=a+d+0+0=a+d$

b.

$(a+b-c)-(a-b+c)=a+(-b-a+c)$

$a+b-c-a+b-c=a-b-a+c$

$(a-a)+(b+b)-(c+c)=(a-a)-b+c$

$2b-2c=-b+c$

$2b+b=2c+c$

$3b=3c$

$b=c$ (đpcm)

30 tháng 11 2017

a) Trên tia \(Ox\) có \(OA<OB \ (1<4)\) nên \(A\) nằm giữa \(O\) và \(B\).

b) Vì \(A\) nằm giữa \(O\) và \(B\) và \(C\) nên ta có:

\(OB=OA+AB\Rightarrow AB=OA-OB=4-1=3 \ (cm)\)

Vì \(A\) và \(C\) nằm trên hai tia \(Ox\) và \(Ox'\) đối nhau nên \(O\) nằm giữa \(A\) và \(C\).

Ta có: \(AC=OA+OC=1+2=3 \ (cm)\)

Suy ra \(AB=AC=\dfrac{BC}2\).

Mà \(A\) nằm giữa \(B, \ O\) và \(C\) nằm trên tia \(Ox'\) nên \(A\) nằm giữa \(B\) và \(C\).

Từ đó suy ra \(A\) là trung điểm của \(BC\).

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
a) 

$\frac{a}{b}< \frac{c}{d}\Leftrightarrow \frac{ad}{bd}< \frac{bc}{bd}$

$\Leftrightarrow \frac{ad-bc}{bd}< 0$

Vì $bd>0$ với mọi $b,d>0$ nên $ad-bc< 0\Leftrightarrow ad< bc$

b) Từ phần a suy ra $bc-ad>0$

$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0$ do $bc-ad>0$ và $b(b+d)>0$ với mọi $b,d>0$)

$\Rightarrow \frac{a+c}{b+d}>\frac{a}{b}$

Lại có:
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$ với mọi $b,d>0$

$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$ 

Ta có đpcm.

13 tháng 1 2016

ta co : -(a-b-c)+(-a+b-c)-(-a+b+c)=-a+b+c+(-a)+b+(-c)+a-b-c

                                                          =(-a+a)+(b-b)+(c-c)-a+b+(-c)

                                                         =-a+b+(-c)

                                                          =-(a-b+c)

\(\Rightarrow dpcm\)

13 tháng 1 2016

Quá dễ. Phá ngoặc ở VT ra, biến đổi về VP

11 tháng 2 2017

A = ( -a -b + c ) - ( -a - b -c )  

   = -a -b +c +a +b + c

   = (-a +a) + ( -b +b) +( c+c)

   =      0    +     0      +    2c

   =              2c

11 tháng 2 2017

-a + b + c+a+b+c

=2b+2c

=2(b+c)

k mình nhé

22 tháng 9 2019

Áp dụng BDDT Cô - si:

\(a+b\ge2\sqrt{ab}\)\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\)

Tương tự