Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(x+5\right)^3-x^3-125\)
\(=x^3+15x^2+75x+125-x^3-125\)
\(=15x\left(x+5\right)\)
\(2,\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
\(3,A=\left(x-1\right)^3-x^3-3x^2-3x-1\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1\)
\(=-6x^2-2\)
#đề.bài.sai.không.bạn
Bai 1:
(x-5)(3x+3)-3x(x-3)+3x+7
=x(3x+3)-5(3x+3)-(3x2-9x)+3x+7
=3x2+3x-15x+15-3x2+9x+3x+7
=22
=>biểu thức này không phụ thuộc vào giá trị của biến.
Bài 2:
(x+2)(x+1)-(x-3)(x+5)=0
x2+x+2x+2-x2-5x+3x+15=0
x+17=0
x= -17
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
Bài 1:
a) \(x^2-2xy-25+y^2\) (Sửa đề)
\(=x^2-2xy+y^2-25\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Vậy ...
b) \(x\left(x-1\right)+y\left(1-x\right)\)
\(=x\left(x-1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
Vậy ...
c) \(7x+7y-\left(x+y\right)\) (Sửa đề)
\(=7\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(7-1\right)\)
\(=6\left(x+y\right)\)
Vậy ...
d) \(x^4+y^4\)
\(=\left(x^2\right)^2+\left(y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Vậy ...
1 \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)
b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
2.
a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(...\)
\(A=2^{32}-1\left(ĐPCM\right)\)
b) Ta có
\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)
=\(201\left(-1+5+9-13\right)=0\)
Suy ra ĐPCM
3
a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)
c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp
Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích