K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

8 tháng 4 2020

*) Gọi d là ƯCLN (3+n; 2n+5) (d thuộc N*)=> \(\hept{\begin{cases}3+n⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3+n\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6+2n⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (3+n; 2n+5)=1

=> đpcm

*) Gọi d là ƯCLN (4-3n; 2n-3) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}4-3n⋮d\\2n-3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(4-3n\right)⋮d\\3\left(2n-3\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}8-6n⋮d\\6n-9⋮d\end{cases}}}\)

=> (8-6n)+(6n-9) chia hết cho d

=> -1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (4-3n;2n-3) =1 => đpcm

25 tháng 12 2021

+) Giả sử n là số chẵn

Nếu n là số chẵn thì n chia hết cho 2

=> n(n+)(2n+1) chia hết cho 2

+) Giả sử n là số lẻ

Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2

<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z     (1)

Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2

(+) Với n=3k

=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

(+) Với n=3k+1

=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3

(+) Với n=3k+2

=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3

<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z    (2)

Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )

                     => n(n+1)(2n+1)  chia hết cho 6 

=> ĐPCM

__HT__ Merry Christmas__

14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)

\(\Leftrightarrow1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2\right\}\)

hay \(n\in\left\{0;-1\right\}\)

Mk trả lời mỗi câu khó nha!!!

d*) \(\dfrac{n+1}{2n+1}\in Z\) 

Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\) 

\(n+1⋮2n+1\) 

\(\Rightarrow2.\left(n+1\right)⋮2n+1\) 

\(\Rightarrow2n+2⋮2n+1\) 

\(\Rightarrow2n+1+1⋮2n+1\) 

\(\Rightarrow1⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

2n+1-11
n-10

Vậy \(n\in\left\{-1;0\right\}\)

6 tháng 3 2018

giúp mình nha !