Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^5-2^{15}.\)
\(=\left(2^4\right)^5-2^{15}.\)
\(=2^{20}-2^{15.}\)
\(=2^{15}\left(2^5-1\right).\)
\(=2^{15}\left(32-1\right).\)
\(=2^{15}.31⋮31\left(đpcm\right).\)
\(8^{30}+8^{31}+8^{32}\)
\(=8^{30}.1+8^{30}.8+8^{30}.8^2\)
\(=8^{30}.1+8^{30}.8+8^{30}.64\)
\(=8^{30}\left(1+8+64\right)\)
\(=8^{30}.73\)
\(=\left(2^3\right)^{30}.73\)
\(=2^{90}.73\)
\(=2^{89}.146⋮146\rightarrowđpcm\)
\(4^{25}+4^{26}+4^{27}+4^{28}+4^{29}+4^{30}\)
\(=4^{25}.1+4^{25}.4+4^{25}.4^2+4^{25}.4^3+4^{25}.4^4+4^{25}.4^5\)
\(=4^{25}.1+4^{25}.4+4^{25}.16+4^{25}.64+4^{25}.256+4^{25}.1024\)
\(=4^{25}\left(1+4+16+64+256+1024\right)\)
\(=4^{25}.1365\)
\(=4^{25}.195.7⋮7\rightarrowđpcm\)
a) Ta có:
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=14+...+2^{21}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{21}.14\)
\(\Rightarrow A=\left(1+...+2^{21}\right).14⋮14\)( đpcm )
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{21}+2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{21}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+...+2^{21}.15\)
\(\Rightarrow A=15\left(2+...+2^{21}\right)⋮15\left(đpcm\right)\)
b) Mk sửa đề chút là A chia 16 dư 15 nhé
Ta có:
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{20}+2^{21}+2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{20}\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow A=2.31+...+2^{20}.31\)
\(\Rightarrow A=\left(2+2^{20}\right).31\)
Vì 31 chia 16 dư 15 nên suy ra đpcm
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)
\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1}{2009}\)
\(2^{1995}-1=A=1+2+2^2+2^3+2^4...+2^{1994}\)
\(\left(1+2+2^2+2^3+2^4\right)=31\) chia hết cho 31
Số số hạng của A là 1995 chia hết cho 5
\(A=31.\left(1+2^5+2^{10}+..+2^{\frac{1995}{5}-5}\right)\)=> DPCM