Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha
Bài này trước tiên ta phải đi chứng minh công thức:
\(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Xong áp dụng là ra thui.
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
ta có: \(A=\sqrt{1+2.2014+2014^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}.\)
\(A=\sqrt{2015^2-2.2015.\frac{2014}{2015}+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
\(A=\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\)
\(A=2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\)
Vậy A=2015
Cách 1:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)
Tương tự:\(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right);\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)
Tương tự cộng vế theo vế có đpcm
Cách 2:
Áp dụng Cauchy Schwarz ta dễ có:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+a+1\right)+1}\le\frac{1}{16}\left(\frac{3^2}{ab+a+1}+\frac{1}{1}\right)=\frac{1}{16}\left(\frac{9}{ab+a+1}+1\right)\)
Tương tự:
\(\frac{1}{bc+b+2}\le\frac{1}{16}\left(\frac{9}{bc+b+1}+1\right);\frac{1}{ca+c+2}\le\frac{1}{16}\left(\frac{9}{ca+c+1}+1\right)\)
Cộng lại:
\(LHS\le\frac{9}{16}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)+\frac{3}{16}\)
Mà \(abc=1\) nên theo bổ đề quen thuộc ta có được đẳng thức sau luôn đúng:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)
Khi đó ta có được đpcm
Vừa nghĩ ra cách này khá là oke gửi đến các bạn :))
Nháp:
Ta đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{v}{w};\frac{w}{u}\right)\) thì ta có được:
\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{v}{w}+\frac{u}{v}+2}=\frac{vw}{uv+uw+2vw}\) đến đây ta chưa được gì cả nên nghĩ đến hướng đi khác
Để ý rằng ta làm tử và mẫu khử nhau rồi tạo ra phân thức mới rồi nhân ngược lên ta được tử số có 2 thừa số nhân lại với nhau
Ta cần tạo ra ít mẫu nhất có thể để bớt sự phức tạp. Mà ta lại có:
\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{w}{u}+\frac{u}{v}+2}=\frac{v}{w+u+2v}\)
Đến đây rõ ràng đã bớt sự phức tạp. Khi đó ta có lời giải như sau:
Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{w}{u};\frac{v}{w}\right)\)
Ta có được
\(LHS=\frac{v}{w+u+2v}+\frac{w}{u+v+2w}+\frac{u}{v+w+2u}\)
\(=3-\left(\frac{u+v+w}{w+u+2v}+\frac{u+v+w}{u+v+2w}+\frac{u+v+w}{v+w+2u}\right)\)
\(=3-\left(u+v+w\right)\left(\frac{1}{u+w+2v}+\frac{1}{u+v+2w}+\frac{1}{v+w+2u}\right)\)
\(\le3-\left(u+v+w\right)\cdot\frac{9}{4\left(u+v+w\right)}=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c=1
a,a=b+1
suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1
suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)
vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)
suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)
từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)
ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)
suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)
vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)
suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)
Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)
từ (*),(**) suy ra đccm