K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Tập xác định : D = R. y' = => y' = 0 ⇔ x=-1 hoặc x=1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (- ; -1), (1 ; +).

31 tháng 3 2017

Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).

7 tháng 7 2018

22 tháng 7 2017

TXĐ: D = R

Giải bài 3 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số nghịch biến

⇔ y’ < 0

⇔ 1 – x2 < 0

⇔ x2 > 1

⇔ x ∈ (-∞ ; -1) ∪ (1; +∞).

+ Hàm số đồng biến

⇔ y’ > 0

⇔ 1 – x2 > 0

⇔ x2 < 1

⇔ x ∈ (-1; 1).

Vậy hàm số đồng biến trên khoảng (-1; 1) và nghịch biến trên các khoảng (-∞; -1) và (1; +∞).

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

TXĐ: $[0;2]$. Hàm nghịch biến khi \(y'=\frac{1-x}{\sqrt{2x-x^2}}<0\Leftrightarrow \left\{\begin{matrix} 1-x< 0\\ 2x-x^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ 0< x< 2\end{matrix}\right.\)

$\Leftrightarrow 1< x< 2$

Đáp án C.

 

NV
20 tháng 7 2021

\(y'=3x^2-6mx\)

Hàm nghịch biến trên \(\left(0;1\right)\) khi với mọi \(x\in\left(0;1\right)\) ta có:

\(3x^2-6mx\le0\)

\(\Leftrightarrow3x\left(x-2m\right)\le0\)

\(\Leftrightarrow x-2m\le0\)

\(\Leftrightarrow m\ge\max\limits_{\left(0;1\right)}\dfrac{x}{2}\Rightarrow m\ge\dfrac{1}{2}\)

17 tháng 6 2019

TXĐ: D = [0; 2]

Giải bài 4 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số đồng biến

⇔ y’ > 0

⇔ 0 < x < 1.

+ Hàm số nghịch biến

⇔ y’ < 0

⇔ 1 < x < 2.

Vậy hàm số đồng biến trên khoảng (0; 1), nghịch biến trên khoảng (1; 2).

29 tháng 8 2021

giúp mình nha

NV
19 tháng 5 2021

ĐKXĐ: \(0\le x\le2\)

\(y'=\dfrac{1-x}{\sqrt{2x-x^2}}-1=\dfrac{1-x-\sqrt{2x-x^2}}{\sqrt{2x-x^2}}\)

\(y'=0\Rightarrow\sqrt{2x-x^2}=1-x\) (\(x\le1\))

\(\Rightarrow2x-x^2=x^2-2x+1\Rightarrow x=\dfrac{2-\sqrt{2}}{2}\)

Hàm nghịch biến trên \(\left(\dfrac{2-\sqrt{2}}{2};2\right)\) và các tập con của nó

D đúng