K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 7

Lời giải:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}$

$\Leftrightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2$
$\Leftrightarrow 2(x^2+y^2+z^2)-2xy-2yz-2xz\geq 0$

$\Leftrightarrow (x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2xz)\geq 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$ (luôn đúng với mọi $x,y,z)$

Do đó ta có đpcm.

Dấu '=' xảy ra khi $x=y=z$

24 tháng 12 2017
ghhjkkkk
17 tháng 7 2018

Giả sử bài toán đã có đầu đủ giả thuyết cần thiết rồi. (Thiếu giả thuyết nhá bác).

\(x^3+y^3+z^3\ge\left(\dfrac{x+y}{2}\right)^3+\left(\dfrac{y+z}{2}\right)^3+\left(\dfrac{z+x}{2}\right)^3\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)-3\left(xy^2+xz^3+yx^2+yz^2+zx^2+zy^2\right)\ge0\)

Ta có bổ đề:

\(x^3+x^3+y^3\ge3yx^2\)

Thế vô thì bài toán được chứng minh.

17 tháng 7 2018

1 cách giải khác:

\(bdt\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge2\left(x^3+y^3+z^3\right)+xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(y+z\right)\left(y^2-yz+z^2\right)+3\left(x+z\right)\left(x^2-xz+z^2\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x-y\right)^2+3\left(y+z\right)\left(y-z\right)^2+3\left(x+z\right)\left(x-z\right)^2=0\)

\("="\Leftrightarrow x=y=z\)

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

4 tháng 9 2019

Pt tương đương:

\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)

Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)

Đồng thời:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Rồi cộng lại 

28 tháng 4 2017

Ta xét hiệu \(\frac{x^2+y^2+z^2}{3}-\left(\frac{x+y+z}{3}\right)^2\)

\(=\frac{1}{9}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (Đúng)

Vậy \(\frac{x^2+y^2+z^2}{3}\ge\left(\frac{x+y+z}{3}\right)^2\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)