K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

áp dụng BĐT | a | + | b | \(\ge\)| a + b | ta có :

| x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x | = 1

dấu " = " xảy ra khi ( x - 2015 ) . ( 2016 - x ) \(\ge\)0 hay 2015 \(\le\)\(\le\)2016

Vậy ...

22 tháng 10 2016

Đề bài bạn sai rồi, giá trị tuyệt đối của x cộng giá trị tuyệt đối của y luôn luôn lớn hơn hoặc bằng giá trị tuyệt đối của x cộng y và dấu bằng xảy ra khi x=y. Bạn nên xem kĩ lại câu hỏi hoặc là không chứng minh được trường hợp đó.

22 tháng 10 2016

bạn nói đúng ớ mìn ghi lộn 

bạn giúp mìn đi

cảm ơn nhìu

15 tháng 2 2017

Bài 1 :

a ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)

\(\Rightarrow\left(x-1\right)^2+5\ge5\) \(\forall\) \(x\) (đpcm)

b ) Vì \(\left(x-5\right)^2\ge0\) \(\forall\) \(x\)

\(\Rightarrow A=\left(x-5\right)^2+3\ge3\) \(\forall\) \(x\)

Dấu "=" xảy ra khi \(\left(x-5\right)^2=0\Rightarrow x=5\)

Vậy GTNN của A là 3 <=> x = 5

Bài 2 :

a ) \(A=x^2-2x+2=x^2-x-x+1+1=x\left(x-1\right)-\left(x-1\right)+1\)

\(=\left(x-1\right)\left(x-1\right)+1=\left(x-1\right)^2+1=B\) (đpcm)

b ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)

\(\Rightarrow A=\left(x-1\right)^2+1\ge1\) \(\forall\) \(x\) (Đpcm)

1 tháng 4 2017

+ Nếu \(x\ge1\) thì \(x^{2016}\ge x^{2015};x^2\ge x\)

\(\Rightarrow f\left(x\right)=x^{2016}-x^{2015}+x^2-x+1\ge1\) \(\forall x\ge1\)

=> f(x) vô nghiệm

+ Nếu \(x\le0\) thì \(-x^{2015}\ge0;-x\ge0\)

\(\Rightarrow f\left(x\right)=x^{2016}-x^{2015}+x^2-x+1\ge1\) \(\forall x\le0\)

=> f(x) vô nghiệm

+ Nếu 0 < x < 1, giả sử f(x) có nghiệm, ta có:

f(x) = x2016 - x2015 + x2 - x + 1 = 0 (1)

=> x2015 - x2014 + x - 1 + \(\dfrac{1}{x}\) = 0 (2)

Cộng lần lượt 2 vế của (1) và (2) ta được:

\(x^{2016}-x^{2014}+x^2+\dfrac{1}{x}=0\)

\(\Rightarrow x^{2016}+x^2+\dfrac{1}{x}=x^{2014}\) (*)

Điều này vô lý vì với 0 < x < 1 ta luôn có: x2 > x2014

\(x^{2016}>0;\dfrac{1}{x}>0\)

\(\Rightarrow x^{2016}+x^2+\dfrac{1}{x}>x^{2014}\)

Vậy ta có đpcm

2 tháng 4 2017

Nếu 0<x<1 , giả sử f(x ) có nghiệm,ta có:

f(x) = x2016 - x2015 +x2 - x + 1 = 0 (1)

f(x) = x ( x2015 - x2014) + x (x - 1) + 1 = 0

f(x ) = x(x2015 - x2014 +x - 1 ) + 1 = 0

=> \(\dfrac{x\left(x^{2015}-x^{2014}+x-1\right)+1}{x}=\dfrac{0}{x}\) =>(x2015 - x2014 + x - 1 + \(\dfrac{1}{x}\) = 0(2)

Từ (1) và (2) => (x2016 - x2015 + x2 - x +1) + (x2015 - x2014 + x - 1 + \(\dfrac{1}{x}\)= 0 + 0 =0

=> x2016 -(x2015 - x2015) - (x - x) + (1 - 1) +x2 + \(\dfrac{1}{x}\) -x2014 = 0

=> x2016 +x2 +\(\dfrac{1}{x}\) = x2014

Vì 0<x<1 = > x thuộc R

=>\(\left\{{}\begin{matrix}x^2>x^{2014}\\x^{2016}>0\\\dfrac{1}{x}>0\end{matrix}\right.\) với mọi 0<x<1

(bạn thử ví dụ x = \(\dfrac{1}{2}\)=> x2 = \(\dfrac{1}{4}\)>x2014 = \(\dfrac{1}{2^{2014}}\)( vì mẫu số lớn thì phân số nhỏ))

=>x2016 + x2 + \(\dfrac{1}{x}\)> 0 + x2014 + 0 = x2014

=> x2016 + x2 + \(\dfrac{1}{x}\) - x 2014 khác 0

=>.......

10 tháng 8 2020

a. Ta có :

\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )

Dấu "=" xảy ra <=> x và y cùng dấu 

2 tháng 9 2017

Bài : 5 

a) Ta có : A = 3 + |4 - x|

Vì : \(\left|4-x\right|\ge0\forall x\)

Nên : A = 3 + |4 - x| \(\ge3\forall x\)

Vậy Amin = 3 khi x = 4

b) Ta có : B = 5|1 - 4x| - 1 

Vì  \(\text{5|1 - 4x|}\ge0\forall x\)

Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)

Vậy Bmin = -1 khi x = 1/4

2 tháng 9 2017

a)\(\left|2x-3\right|=6\)

\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

b)\(2.\left|3x+1\right|=5\)

\(\left|3x+1\right|=2,5\)

\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

c)\(7,5-3\left|5-2x\right|=-4,5\)

\(3\left|5-2x\right|=12\)

\(\left|5-2x\right|=4\)

\(...\)