K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

b) Ta có \(9^{2n}-1=\left(...81\right)^n-1=\left(...1\right)-1=\left(...0\right)\)

        Chia hết cho 5&2 

tick nha

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

2 tháng 1 2017



n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
 

2 tháng 1 2017

+) Xét n=5k

=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5

+) Xét n=5k+1

=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)

\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5

+) Xét n=5k+2

=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)

\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5

+) Xét n=5k+3

=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)

\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5

+) Xét n=5k+4

=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)

\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5

Từ 5 trường hợp trên => đpcm

30 tháng 6 2017

  + Xét TH1: n chẵn

Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.

   + Xét TH2: n lẻ

Suy ra n + 5 chẵn

Do đó (n + 5) chia hết 2

Vậy n(n +5) chia hết cho 2.

8 tháng 11 2017

TA CÓ

+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh

+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6

mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2

suy ra n(n+5) chia hết cho 2

Vậy n(n+5) luôn chia hết cho 2 (đpcm)

11 tháng 1 2018

Nếu n = 2k => n chia hết cho 2

=> n(n + 5) chia hết cho 2

Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2

=> n + 5 chia hết cho 2

=> n(n + 5) chia hết cho 2

Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.

n luôn chia hết cho 2

vì n + 3 x n + 12 luôn là số chẵn

n(n + 5) = n2 + 5n

+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn.  n2 + 5n  2

+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn.  n2 + 5n  2

 ĐPCM

12 tháng 11 2015

dài quá bạn hỏi từng câu nhé

12 tháng 11 2015

bạn chia thành ngắn í,dài khong thích đọc

26 tháng 6 2015

c)

gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)

ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)

                                       \(=2.2.k.k+4k\)

                                       \(=4k^2+4k\)

mà \(4k^2+4k\) chia hết cho 4

=>\(2k.\left(2k+2\right)\) chia hết cho 4

20 tháng 9 2015

a)Goi 2 so tu nhien lien tiep la a;a+1

Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2

Neu a la so le:a+1 la so le

Vay tich2 so tu nhien lien tiep chia het cho 2