K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

a) Vì 1494 và 1495 là số tự nhiên liên tiếp nên chia hết cho 2 , nhân với 1496 là số chẵn nên 1494 x 1495 x 1496 chia hết cho 2 => 1494 x 1495 x 1496 chia hết cho 2 x 90 => chúng chia hết cho 180.

b) Vì 1494 x 1495 x 1496 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3 => 1494 x 1495 x 1496 chia hết cho 3 => 1494 x 1495 x 1496 chia hết cho 3 x 165 => 1494 x 1495 x 1496 chia hết cho 495

Mấy câu dưới ko bik

29 tháng 1 2016

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv//////////////////////?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

20 tháng 10 2016

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 tháng 5 2022

a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121

 

14 tháng 8 2016

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

Đáp số: n=28.

12 tháng 10 2017

1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.

2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )

3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13

Được cập nhật Bùi Văn Vương 

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.