Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x>1\Rightarrow x-\dfrac{1}{x}=\dfrac{\left(x+1\right)\left(x-1\right)}{x}>0\)
Xét hiệu::
\(2\left(x-\dfrac{1}{x}\right)\left(x^2+\dfrac{1}{x^2}+1\right)-3\left(x-\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}\right)\)
\(=2\left(x^2+\dfrac{1}{x^2}+1\right)-3\left(x+\dfrac{1}{x}\right)\)
\(=2\left(\left(x+\dfrac{1}{x}\right)^2-1\right)-3\left(x+\dfrac{1}{x}\right)\)
\(=2\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)-2\)
\(=\left(2\left(x+\dfrac{1}{x}\right)+1\right)\left(x+\dfrac{1}{x}-2\right)\)
Ta có \(x>1\Rightarrow x+\dfrac{1}{x}>2\sqrt{x.\dfrac{1}{x}}=2\Rightarrow x+\dfrac{1}{x}-2>0\)
Và \(2\left(x+\dfrac{1}{x}\right)+1>0\)
\(\Rightarrow\left(2\left(x+\dfrac{1}{x}\right)+1\right)\left(x+\dfrac{1}{x}-2\right)>0\)
\(\Leftrightarrow2\left(x^3-\dfrac{1}{x^3}\right)>3\left(x^2-\dfrac{1}{x^2}\right)\) (đpcm)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Ta có:
\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\)
Tương tự ...
Cộng lại ta có:
\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)
Do đó ta chỉ cần chứng minh:
\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)
\([(x+1)(x+4)][(x+2)(x+3)]+1 \)
\(=(x^{2}+5x+4)((x^{2}+5x+6)+1 \)
\(Đặt h=x^{2}+5x+5\)
\(\Leftrightarrow\)\(P=(h-1)(h+1)+1\)
\(=h^{2}-1+1=h^{2}=(x^{2}+5x+5)^{2}\)\(\ge\)0\(\forall\)x
Với x ≥ 0 ⇒ x + 1, x + 2, x + 3, x + 4 đều > 0
⇒ P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Với -1 ≤ x ≤ -4 thì P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Với x < -4 ⇒ x + 1, x + 2, x + 3, x + 4 đều < 0
⇒ P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Vậy ∀ x thì
\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)
\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)
Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)