K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\ge0\\ \Leftrightarrow\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\ge0\\ \Leftrightarrow\left(x^2-x-4x+4\right)\left(x^2-2x-3x+6\right)+1\ge0\\ \Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\ge0\\ \Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+4\cdot6+1\ge0\\ \Leftrightarrow\left(x^2-5x\right)^2+10\left(x^2-5x\right)+25\ge0\\ \Leftrightarrow\left(x^2-5x\right)^2+2\cdot\left(x^2-5x\right)\cdot5+5^2\ge0\\ \Leftrightarrow\left(x^2-5x+5\right)^2\ge0\text{(luôn đúng)}\) 

11 tháng 7

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)

Đặt x^2 - 5x = t 

\(\left(t+4\right)\left(t+6\right)+1=t^2+10t+24+1=t^2+10t+25=\left(t+5\right)^2\ge0\)

Vậy t có đpcm 

8 tháng 5 2016

Có x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1
x10+x5+1=(x5+12)2+34
⇒x10+x5+1>0
x2+x+1=(x+12)2+34>0

⇒x8−x7+x5−x4+x3−x+1>0

T

ích mk nha bạn

8 tháng 5 2016

Viết lại câu trả lời được "Copy" trên mạng bởi "Thần hộ vệ ...."

\(x^8-x^7+x^5-x^4+x^3-x+1=\frac{x^{10}+x^5+1}{x^2+x+1}=\frac{\left(x^5+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}>0\)

3 tháng 6 2019

Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi

Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)

\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)

\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z

Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))

Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)

Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)

\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)

Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)

\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)

BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

Chứng minh hoàn tất

3 tháng 6 2019

Em sửa chút cho bài làm ngắn gọn hơn.

Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)

BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)

Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!

21 tháng 5 2023

∆ = [-2(m + 2)]² - 4(m + 1)

= 4m² + 16m + 16 - 4m - 4

= 4m² + 12m + 12

= 4m² + 12m + 9 + 3

= (2m + 3)² + 3 > 0 với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m