Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy bất đẳng thức đúng với n = 2
Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là
3k > 3k + 1
Nhân hai vế của (1) vơi 3, ta được:
3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.
Vì 6k - 1 > 0 nên
3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.
tức là bất đẳng thức đúng với n = k + 1.
Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.
b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2
Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là
2k + 1 > 2k + 3 (2)
Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh
2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5
Nhân hai vế của bất đẳng thức (2) với 2, ta được:
2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.
Vì 2k + 1> 0 nên 2k + 2 > 2k + 5
Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.
Phân tích nhân tử nhầm=>giải lại
\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)
\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm
Lời giải:
\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)
\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)
\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N
\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)
ví dụ đơn giải với k=0 => n= 2
\(A=2.2^3-3.2^2+2=14⋮̸6\)
Kết luận đề sai
Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R
Có thể chứng minh đẳng thức sau :
\(rC^r_n=nC^{r-1}_{n-1}\) \(\left(r=1,2,3,....,n-1\right)\)
Vì \(n\) là số nguyên tố và \(r< n\), nên \(n\) là ước của \(C^r_n\)
1.
Ta có:
\(\left(n+1\right)^2=n^2+2n+1>n\left(n+2\right)\)
Lấy logarit 2 vế:
\(ln\left(n+1\right)^2>ln\left[n\left(n+2\right)\right]\)
\(\Rightarrow2ln\left(n+1\right)>ln\left(n\right)+ln\left(n+2\right)\ge2\sqrt{ln\left(n\right).ln\left(n+2\right)}\)
\(\Rightarrow ln^2\left(n+1\right)>ln\left(n\right).ln\left(n+2\right)\)
\(\Rightarrow\dfrac{ln\left(n+1\right)}{ln\left(n\right)}>\dfrac{ln\left(n+2\right)}{ln\left(n+1\right)}\)
\(\Rightarrow log_n\left(n+1\right)>log_{n+1}\left(n+2\right)\)
2.
\(\int\dfrac{x^3-1}{x^4+x}dx=\int\dfrac{2x^3-\left(x^3+1\right)}{x\left(x^3+1\right)}dx=\int\dfrac{2x^2}{x^3+1}dx-\int\dfrac{1}{x}dx\)
\(=\dfrac{2}{3}\int\dfrac{d\left(x^3+1\right)}{x^3+1}-\int\dfrac{dx}{x}\)
\(=\dfrac{2}{3}ln\left|x^3+1\right|-ln\left|x\right|+C\)
* Với n = 1:
Vế trái của (1) = 1.4 = 4; vế phải của (1) = 1 . ( 1 + 1 ) 2 = 4.
Suy ra Vế trái của (1) = Vế phải của (1). Vậy (1) đúng với n = 1.
* Giả sử (1) đúng với n= k. Có nghĩa là ta có: 1.4 + 2.7 + ⋅ ⋅ ⋅ + k 3 k + 1 = k k + 1 2 2
Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh:
1.4 + 2.7 + ⋅ ⋅ ⋅ + k 3 k + 1 + k + 1 3 k + 4 = k + 1 k + 2 2
Thật vậy 1.4 + 2.7 + ⋅ ⋅ ⋅ + k 3 k + 1 ⏟ = k k + 1 2 + k + 1 3 k + 4 = k k + 1 2 + k + 1 3 k + 4
= ( k + 1 ) . [ k . ( k + 1 ) + 3 k + 4 ] = ( k + 1 ) . ( k 2 + 4 k + 4 ) = k + 1 k + 2 2 (đpcm).
Vậy (1) đúng với n = k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n.