Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé
Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)
\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản
a Gọi ước chung của 2n+5 và 3n+7 là n
2n+5 ⋮ x=>6n+15⋮x
3n+7 ⋮ x =>6n+14 ⋮x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
b 6n-14 chia hết x
2n-5 chia hết x=>6n-15 chia hết x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
a) Ta có: .
Các câu sau chứng minh tương tự.
k nha pls
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
a)Gọi ƯCLN(2n+5;3n+7)=d
=>2n+5 chia hết cho d=>3(2n+5) chia hết cho d hay 6n+15 chia hết cho d
=>3n+7 chia hết cho d=>2(3n+7) chia hết cho d hay 6n+14 chia hết cho d
=>(6n+15)-(6n+14) chia hết cho d
=>1 chia hết cho d hay d=1
=>ƯCLN(2n+5;3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
=>(2n+5)/(3n+7) là p/s tối giản
b)Gọi ƯCLN(6n-14;2n-5)=a
=>6n-14 chia hết cho a
=>2n-5 chia hết cho a =>3(2n-5) chia hết cho a hay 6n-15 chia hết cho a
=>(6n-14)-(6n-15) chia hết cho a
(6n-6n)-(14-15) chia hết cho a
=>1 chia hết cho a hay a=1
=>ƯCLN(6n-14;2n-5)=1
=>6n-14 và 2n-5 là 2 số nguyên tố cùng nhau
=>(6n-14)/(2n-5) là p/s tối giản