K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

 Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11.

Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1). Có: 2^4n=.......6=......5+1=5x +1.

Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên ...

15 tháng 3 2018

Câu trả lời hay nhất:  2^4n = (2^4)^n = ......6( có chữ số tận cùng là 6 
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0) 
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?

mk nghĩ đề bài nó phải thế này chứ : Chứng minh: (2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?-lớp 8

28 tháng 10 2021

giời ơi lớp 6 mà cũng ko biết, bó tay

28 tháng 10 2021

ủa bn Minh Anh 6A Lê bn ấy ko biết mới hỏi chứ

Ta có: 

\(2^{4n}-1\)

\(=\left(2^4-1\right)\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)

\(=15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)

Mà \(n\in N\)

\(\Rightarrow15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...1\right)⋮15\)

\(\Rightarrow2^{4n}-1⋮15\forall n\in N\)

4 tháng 1 2018

Ta có:

\(16\equiv1\left(mod15\right)\)

\(\Leftrightarrow2^4\equiv1\left(mod15\right)\)

\(\Leftrightarrow2^{4n}\equiv1\left(mod15\right)\)

\(\Leftrightarrow2^{4n}-1\equiv0\left(mod15\right)\)

\(\Leftrightarrow2^{4n}-1⋮15\)

21 tháng 1 2016

vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8

mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6

vậy 8(m-1)m(m+1) chia hết cho 48

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

26 tháng 7 2018

Cách 1: 4 n + 3 2 - 25 = 4 n + 3 2 - 5 2

= (4n + 3 + 5)(4n + 3 – 5)

= (4n + 8)(4n – 2)

= 4(n + 2). 2(2n – 1)

= 8(n + 2)(2n – 1).

Vì n ∈ Z nên (n + 2)(2n – 1) ∈ Z. Do đo 8(n + 2)(2n – 1) chia hết cho 8.

Cách 2:  4 n + 3 2 - 25 = 16 n 2 + 24 n + 9 - 25  

= 16 n 2  + 24n – 16

= 8( 2 n 2  + 3n – 2).

Vì n ∈ Z nên 2 n 2  + 3n – 2 ∈ Z. Do đo 8( 2 n 2  + 3n – 2) chia hết cho 8.