K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

Ta có: a2 +a+1=(a2 +2a1/2+1/4 )+ 3/4 =(a+1/2)2 +3/4 >0

 Tương tự: a2 -a+1=( a-1/2 )2 +3/4 >0

Vậy suy ra điều cần cm

Ta có :a ²+a+1=(a ²+a+1/4)+3/4=(a+1/2) ²+3/4

          a ²-a+1=(a ²-a+1/4)+3/4=(a-1/2) ²+3/4

Vì (a-1/2) ² ≥  0;(a-1/2)²≥  0 với mọi a nên suy ra điều phải chứng minh

23 tháng 4 2019

Ta có: \(a^2+a+1=a^2+a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(a^2-a+1=a^2-a+\frac{1}{4}+\frac{3}{4}=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{a^2+a+1}{a^2-a+1}>0\forall a\in R\)

9 tháng 2 2019

"Chấm" nhẹ hóng cao nhân ạ :)

P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)

9 tháng 2 2019

Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.

24 tháng 9 2021

\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)

22 tháng 7 2021

đây nhé

22 tháng 7 2021

Ta có a(a + 1) + 1  = a2 + a + 1 = \(a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm) 

20 tháng 4 2018

\(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}{a^2-2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}\)

\(=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) ( luôn đúng)

13 tháng 2 2016

Đặt  \(P=a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\), ta được:

\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\)

Áp dụng bất đẳng thức  Cô-si với bộ  \(\left(a+b\right)^2\) và  \(\left(\frac{1+ab}{a+b}\right)^2\), ta có:

\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\sqrt{\left(a+b\right)^2\left(\frac{1+ab}{a+b}\right)^2}-2ab=2\left(1+ab\right)-2ab=2\)

 

13 tháng 2 2016

moi hok lop 6

18 tháng 5 2016

Vì a>0 nên a2+1>0. Áp dụng BĐT Cô-si:

\(\frac{a}{a^2+1}+\frac{3\left(a^2+1\right)}{2a}\ge2\sqrt{\frac{a}{a^2+1}\times\frac{3\left(a^2+1\right)}{2a}}\)

<=> \(\frac{a}{a^2+1}+\frac{3\left(a^2+1\right)}{2a}\ge2\sqrt{\frac{3}{2}}\)

<=> \(\frac{a}{a^2+1}+\frac{3\left(a^2+1\right)}{2a}\ge\sqrt{6}\)

Đây là GTNN của biểu thức rồi, hình như đề bài sai thì phải

10 tháng 8 2017

hi kết bạn nha