Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a∈Za∈Z nên suy ra, ta có các trường hợp sau:
+)TH1:a=3k(k∈Z):+)TH1:a=3k(k∈Z):
Ta có:(a–1).(a+2)+12=(3k–1).(3k+2)+12(a–1).(a+2)+12=(3k–1).(3k+2)+12
Vì (3k–1).(3k+2)(3k–1).(3k+2) không chia hết cho 3,123,12 chia hết cho 33 nên suy ra:
(3k–1).(3k+2)+12(3k–1).(3k+2)+12 không chia hết cho 33
=>(3k–1).(3k+2)+12=>(3k–1).(3k+2)+12 không chia hết cho 9(1)9(1)
+)TH2:a=3k+1(k∈Z):+)TH2:a=3k+1(k∈Z):
Ta có:(a–1).(a+2)+12=3k.(3k+3)+12=9.k.(k+1)+12(a–1).(a+2)+12=3k.(3k+3)+12=9.k.(k+1)+12
Vì 9.k.(k+1)9.k.(k+1) chia hết cho 9,129,12 không chia hết cho 99 nên suy ra:
9.k.(k+1)+129.k.(k+1)+12 không chia hết cho9(2)9(2)
+)TH3:a=3k+2(k∈Z):+)TH3:a=3k+2(k∈Z):
Ta có:(a–1).(a+2)+12=(3k+1).(3k+4)+12(a–1).(a+2)+12=(3k+1).(3k+4)+12
Vì (3k+1).(3k+4)(3k+1).(3k+4) không chia hết cho 3,123,12 chia hết cho 33 nên suy ra:
(3k+1).(3k+4)+12(3k+1).(3k+4)+12 không chia hết cho 33
=>(3k+1).(3k+4)=>(3k+1).(3k+4) không chia hết cho 9(3)9(3)
Từ (1),(2),(3)(1),(2),(3) suy ra: (a–1).(a+2)+12(a–1).(a+2)+12 không chia hết cho 9
=>(a–1).(a+2)+12=>(a–1).(a+2)+12 không phải là bội của 9.
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)
A = 1/2^2 + 1/3^2 + ... + 1/n^2
> 0/2^2 + 0/3^2 + ... + 0/n^2 = 0 => A>0. (1)
A = 1/2^2 + 1/3^2 + ... + 1/n^2
=1/2.2 + 1/3.3 + ... + 1/n.n
<1/1.2 + 1/2.3 + ... + 1/(n-1)n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - ... + 1/n-1 - 1/n = 1-1/n <1 => A < 1. (2)
Từ (1) và (2), suy ra: 0 < A <1
=> A ko phải STN
a) Ta có a+2 là ước của 7
Mà Ư(7) = { +1 ;+7 }
Ta có bảng :
a+2 -7 -1 1 7
a -9 -3 -1 5
Vậy a∈{ -9 ;-3 ; -1 ;5 }
b ) Làm tương tự cho câu b ta đc a ∈{-25/2 ; -13/2 ; -9/2; -7/2; -5/2; -3/2; 1/2 ;3/2 ;5/2 ; 7/2 ; 11/2 ; 23/2
Làm ương tự cho các câu còn lại nha pn
d) Vì a-5 là bội của a+2
\(\Rightarrow a-5⋮a+2\)
\(\Rightarrow a+2-7⋮a+2\)
Mà \(a+2⋮a+2\Rightarrow7⋮a+2\)
\(\Rightarrow a+2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
Lập bảng
Vậy\(x\in\left\{-1;-3;5;-9\right\}\) | ||||||||||||||
B=(1/4+1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
1/4+1/5+1/6+1/7+1/8+1/9>1/9+1/9+1/9+1/9+1/9+1/9=6/9>1/2
1/10+1/11+...+1/19>1/19+1/19+...+1/19=10/19>1/2
10 số
=>B>1/2+1/2=1
Vậy ta có ĐPCM
BN VÀO PHẦN CÂU HỎI TƯƠNG TỰ HOẶC BN LÊN GOOGLE MÀ TRA
CÂU TRẢ LỜI DÀI LẮM MK KO MUỐN VIẾT
Ta có : (x - 1)5 - 1 = 36
=> (x - 1)5 = 37
=> (x - 1) + 5 ko thỏa mãn
mình sửa lại đề nha: (x-1)5 - 1 = 36
Mình xin lỗi mn nhìu lắm
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
Bài a. Giả sử có số nguyên a đề (a-1)(a+2) +12 là bội của 9
Khi đó (a-1)(a+2) +12 = a2 + a + 10 = a2 + a + 1 + 9 chia hết cho 9
Hay a2 + a + 1 = 9k suy ra 4a2 + 4a + 4 = 36k
(2a+1)2 = 36k - 3 = 3 (12k - 1)
suy ra 12k - 1 chia hết cho 3 (vô lý)
Vậy.....không là bội của 9
b,
b){ ( -1) + 2 } * { ( -1 + 9 } + 21 = 29 k la boi cua 49
(0+2)*(0+9)+21=39 k la boi cua 49
(1+2)*(1+9)+21=51 k la boi cua 49
nho chon cau tra loi cua mik nha
duyệt đi olm
toi da trung ai tinh cua nang