K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2

Ta có tổng 3 số tự nhiên liên tiếp là:

a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3

22 tháng 9 2015

Bài 1 :

Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ

Bài 2 :

Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn 

2 tháng 8 2023

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2

Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)

b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3

Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)

 

2 tháng 8 2023

c, Hai số tự nhiên liên tiếp là k và k+1

Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2

Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2

(ĐPCM)

d, Ba số tự nhiên liên tiếp là m;m+1 và m+2

Tích chúng: m(m+1)(m+2) 

+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3

=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

 

5 tháng 4 2016

a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2 
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3

b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3

Gọi D là ước số chung của chúng.

Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ

.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!

 chúc bạn học tập tốt !!!

15 tháng 9 2016

Giải:

a) Gọi 3 số tự nhiên liên tiếp đó lần lượt là: a, a + 1, a + 2 ( a,a+1,a+2 thuộc N )

Xét tổng a, a + 1, a + 2 ta có:

\(a+\left(a+1\right)+\left(a+2\right)=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)

\(\Rightarrowđpcm\)

b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là a, a + 1, a + 2, a + 3 ( a,a+1,a+2,a+3 thuộc N )

Xét tổng của a, a + 1, a + 2, a + 3 ta có:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)

\(=\left(a+a+a+a\right)+\left(1+2+3\right)\)

\(=4a+6\)

\(\Rightarrowđpcm\)

c) Gọi 5 số tự nhiên đó lần lượt là: a, a + 1, a + 2, a + 3, a + 4 ( a, a+1, a+2 , a+3, a+4 thuộc N )

Xét tổng của a, a + 1, a + 2, a + 3, a + 4 ta có:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)\)

\(=\left(a+a+a+a+a\right)+\left(1+2+3+4\right)\)

\(=5a+10\)

\(=5\left(a+2\right)⋮5\)

\(\Rightarrowđpcm\)

15 tháng 9 2016

a) Gọi ba số tự nhiên liên tiếp là a, a + 1 , a + 2 , a\(\in\)N. Khi đó a + (a+1) + (a+2) = 3a + a

Mà 3a \(⋮\) 3, 3 \(⋮\) 3 \(\Rightarrow\) (3a + a) \(⋮3\left(đpcm\right)\)

b) \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)

Mà \(4a⋮4,6⋮̸\) 4, nên (4a+6) \(⋮̸\) 4 (đpcm)

c) a + (a + 1) + (a + 2) + (a + 3) + (a+4) = 5a + 10

Mà 5a \(⋮\) 5 và 10 \(⋮5nên\left(5a+10\right)⋮5\left(đpcm\right)\)

 

6 tháng 9 2015

nhìu dzữ @@

6 tháng 9 2015

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

8 tháng 12 2019

a) Giả sử ba số tự nhiên liên tiếp là a, a+1, a+2 (a N).

Tổng ba số tự nhiên liên tiếp là:

a + (a+1) + (a+2) = 3a + 3=3(a+1) 3. Đpcm.