K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.

21 tháng 2 2018

Gọi d = ƯCLN ( 14n + 3 ; 21n + 5 )

Ta có :

14n + 3 \(⋮\)d ; 21n + 5 \(⋮\)d

=> 3 ( 14n + 3 ) \(⋮\)d ; 2 ( 21n + 5 ) \(⋮\)d

=> 42n + 9 \(⋮\)d ; 42n + 10 \(⋮\)d

=> ( 42n + 10 ) - ( 42n + 9 ) \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\){ 1 ; - 1 }

=> \(\frac{14n+3}{21n+5}\)là phân số tối giản

6 tháng 4 2020

kho ng bi et

25 tháng 4 2020

Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1

Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d

=> (2n+3) - (n+1) \(⋮\)d

=> (2n+3) -2(n+1) \(⋮\)d

=> 2n+3 -2n -2 \(⋮\)d

=> 1 \(⋮\)d

=> n+1/2n+3 là phân số tối giản

Vậy...

25 tháng 4 2020

Gọi d là ƯC(n+1 ; 2n + 3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n +1 ; 2n + 3) = 1

=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )

19 tháng 2 2019

Gỉa sử phân số \(\frac{b-a}{b}\)chưa tối giản. Như vậy b - a và b có ước chung là d > 1

Ta có b - a = dq1 (1) và b = dq2 (2) , trong đó q1 , q2  thuộc N và q2 > q1.

Từ (1) ; (2) suy ra a = d(q2 - q1 ) nghĩa là a cũng có ước là d.

Như vậy a và b có ước chung là d > 1 trái với giả thiết \(\frac{a}{b}\) là phân số tôi giản

Vậy nếu \(\frac{a}{b}\) tối giản thì \(\frac{b-a}{b}\) cũng tối giản 

26 tháng 4 2018

gọi d là ƯC(2n+1; 3n+2)     (1)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)

\(\Rightarrow6n+3-6n-4⋮d\)

\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)

\(\Rightarrow0-1⋮d\)

\(\Rightarrow-1⋮d\)

\(\Rightarrow d=\pm1\)    (2)

\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)

=> 2n+1/3n+2 là phân số tối giản