Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2
ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3
vì 3a chia hết cho3 , 3 chia hết cho 3
suy ra ba số tự nhiên liên tiếp chia hết cho 3
b, gọi bốn số tự nhiên liên tiếp là a,a+1,a+2,a+3
ta có a+(a+1) +(a+2)+(a+3) = 4a +6 không chia hết cho 4
vì 4a chia hết cho 4 , 6 không chia hết cho 4
suy ra bốn số tự nhiên liên tiếp không chia hết cho 4
c,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia
hết cho 5
vì 5a chia hết cho 5 ,10 chia hết cho 5
suy ra năm số tự nhiên lien tiếp chia hết cho5
a) gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
câu c) làm tương tự như câu a)
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2.
Ta có:(a+a+1+a+2)=3a+3
Mà 3a chia hết cho 3
3 chia hết cho 3
Suy ra 3a+3 chia hết cho 3
vì 3 số có trung bình cộng chia được cho 3 nên phải chia được cho 3
a)Ta gọi a;a+1;a+2 lần lượt là ba số tự nhiên liên tiếp.Tổng của chúng là:
a+(a+1)+(a+2)=a+a+1+a+2
=3xa+3
=3(a+1) chia hết cho 3
còn lại tương tự
Gọi 3 stn liên tiếp là a; a+1; a+2.
Ta có:
a + (a+1) + (a+2) = a + a + 1 + a + 2 = 3a + 3 = 3.(a+1) chia hết cho 3.
Gọi 4 stn liên tiếp là a; a+1; a+2; a+3.
Ta có:
a + (a+1) + (a+2) + (a+3) = a+a+1+a+2+a+3=4a+6=4a+4+2=4.(a+1)+2 chia 4 dư 2 nên không chia hết cho 4
Vậy...
Gọi 3 số tự nhiên liên tiếp là 3k,3k+1,3k+2
Tổng 3 số là: 3k+3k+1+3k+2=9k+3 chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là 4k,4k+1,4k+2,4k+3
Tổng 4 số là: 4k+4k+1+4k+2+4k+3=12k+6 ko chia hết cho 4
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)
Chứng minh rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Đặt 3 số tự nhiên liên tiếp là: n, n+1, n+2
Giả sử n⋮ 3 thì thỏa mãn đề bài
Giả sử n chia 3 dư 1 thì n=3k+1 ⇒ n+2=3k+3⋮ 3 ⇒ thỏa mãn đề bài
Giả sử n chia 3 dư 2 thì n=3k+2 ⇒ n+1=3k+3⋮ 3 ⇒ thỏa mãn đề bài
Vậy trong 3 số tự nhiên liên tiếp thì luô có 1 số chi hết cho 3
ta có : tông 3 số tự nhiên liên tiếp là :
a+a+1+a+2= 3a+3
vì 3 chia hết cho (chc) 3 mà một số tự nhiên nhân với bất kì số nào cũng chia hết cho chính no
=> 3a chc 3
=> 3a+3 chc 3
Vậy 3 số tự nhiên liên tiếp luôn chc 3