Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 1 A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên 1 A viết được dưới dạng số thập phân vô hạn tuần hoàn đơn.
1 A = a 1 a 2 ... a n ¯ 99...9 ⏟ n ⇒ 99...9 ⏟ n = A . a 1 a 2 ... a n ¯ ⇒ 99...9 ⏟ n ⋮ A .
Có một bạn hỏi câu này và bạn đã trả lời ruif, còn hỏi làm gì nữa
Gọi số n là số lẻ có tận cùng khác 5
Xét dãy số gồm (n + 1) số nguyên sau:
9
99
999
....
99...999
(n + 1) chữ số 9
Khi chia cho nthì sẽ có (n + 1) số dư
=> Theo nguyên lý Dinchlet có ít nhất 2 số có cùng số dư.
Giả sử: ai = n . q + r
: aj = n . k + r
Còn lại tự làm nha!
ta lập được 7 số sau
a1=1
a2=11
a3=111
a4=1111
a5=11111
a6=111111
a7=1111111
- Nếu một trong các số trên chia hết cho 7 thì bài toán đc chứng minh
-Nếu không có số nào chia hết cho 7 thì khi chia các số nà cho 7 được 6 số dư là một trong các số từ 1 đến 6 . Vì 7 số mà chỉ có 6 số dư nên phải có ít nhất hai số khi chia cho 7 cùng số dư nên hiệu của 2 số đó chia hết cho7 => đpcm