K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 3 2016
gọi số chính phương là m2, theo bài ra m2(m2-1) = m2(m+1).(m-1)= m(m+1)(m-1)m
dễ dàng chứng minh được tích này chia hết cho 2,3,6 mặc khác nó còn chia hết cho 22 nên chia hết cho 12
ko bít đúng ko nha
duyệt đi
8 tháng 7 2018
1. Chứng minh rằng: 3^2+3^3+3^4+...+3^101 chia hết cho 120.
Ta có:
A=3^2+3^3+3^4+...+3^101
= (3^2+3^3+3^4+3^5) + ( 3^6+3^7+3^8+3^9) +.... + ( 3^98 + 3^99 + 3^100 + 3^101)
= 3.(3+3^2+3^3+3^4) + 3^5.(3+3^2+3^3+3^4) +....+ 3^97.(3+3^2+3^3+3^4)
= 120.(3+3^5+...+3^97) chia hết cho 120
(đ.p.c.m)
:) câu 2 em chịu