K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

23 tháng 11 2024

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

30 tháng 12 2017

Gọi 4 số tự nhiên liên tiếp là \(a,\left(a+1\right),\left(a+2\right),\left(a+3\right)\)

Tổng các số là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)

                   \(=a+a+1+a+2+a+3\)

                    \(=4a+6\)

                     \(=4a+4+2\)

                      \(=4\left(a+1\right)+2\)

Tuy nhiên số chính phương chia hết cho 4 hoặc chia 4 dư 1

Mà tổng 4 số tự nhiên chia 4 dư 2 nên k phải số chình phương

 \(=>ĐPCM\)

30 tháng 12 2017

cảm ơn nhé shushi kaka

30 tháng 12 2017

chứng minh 

số chính phương chia 4 dư 0 hoac 1

A=n^2 (n so tu nhien)

n=2k => A=4k^2 chia het cho 4

n=2k+1=> A=(2k+1)^2=4k^2+4k+1 chia 4 du 1

Kết luận số chính phương chia cho 4 chỉ có thể  dư 0 hoặc dư 1

23 tháng 3 2015

Cậu sai rồi: Tích của 4 số tự nhiên liếp cộng thêm 1 mới là số chính phương.

20 tháng 3 2016

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.:))

21 tháng 1 2016

đặt là S=(n+1)*(n+2)*(n+3)*(n+4)+1.Số 1 để im,nhân n+1 và n+4,n+2 và n+3.Trong 2 thừa số đó bạn bạn đặt là P*(P+2)+1=P2+2*P*1+12 là thành hằng đẳng thức.Suy ra nó là 1 SCP

29 tháng 3 2015

Hồ Bảo Vy làm sai rồi, 15 có tận cùng là 5 nhưng có là số chính phương đâu

Dây mới là cách làm đúng:

Gọi 4 số đó là n; n+1; n+2; n+3

Theo đề bài có

n(n + 1)(n + 2)(n + 3) + 1

Nhóm n với n + 3 , n + 1 với n + 2, được

(n^2 + 3n)(n^2 + 3n + 2) + 1

Đặt n^2 + 3n + 1 = y => n^2 + 3n = y - 1 ; n^2 + 3n + 2 = y + 1

Có (y - 1)(y + 1) + 1

= y^2 - 1 + 1 = y^2 là số chính phương => điều phải chứng minh 

17 tháng 8 2018

de mak

4 tháng 7 2019

Goi 2 số liên tiếp là n và (n + 1)

Tích 2 số đó là: n.(n + 1)

Mà n.n < n. (n + 1) < (n + 1).(n + 1)

Hay n2 < n. (n + 1) < (n + 1)2

=> n.(n + 1) không thể là số chính phương

6 tháng 12 2016

Lấy 4 số bât kỳ làm thử nghiệm . 

2 . 3 . 4 . 5 = 120 

120 + 1 = 121 ( số chính phương )

3 . 4 . 5 . 6 = 360

360 + 1 = 361 ( số chính phương )