K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

Bây giờ ta sẽ đi tìm tọa độ giao điểm của 3 đường thẳng trên

Với (d1) và (d2) cắt nhau tại điểm \(A\left(x_1;y_1\right)\) nên khi đó:
\(\hept{\begin{cases}y_1=3x_1-2\\y_1=-\frac{1}{3}x_1+\frac{4}{3}\end{cases}}\Rightarrow3x_1-2=-\frac{1}{3}x_1+\frac{4}{3}\Leftrightarrow\frac{10}{3}x_1=\frac{10}{3}\Rightarrow\hept{\begin{cases}x_1=1\\y_1=1\end{cases}}\)

Vậy \(A\left(1;1\right)\)

Tương tự gọi B,C là giao điểm của đường (d3) với (d2) , (d1

Khi đó ta dễ dàng tính được: \(B\left(4;0\right)\) ; \(C\left(2;4\right)\)

Áp dụng công thức tính khoảng cách giữa 2 điểm trong mặt phẳng ta có:
\(AB=\sqrt{\left(1-4\right)^2+\left(1-0\right)^2}=\sqrt{10}\Rightarrow AB^2=10\)

\(AC=\sqrt{\left(1-2\right)^2+\left(1-4\right)^2}=\sqrt{10}\Rightarrow AC^2=10\)

\(BC=\sqrt{\left(4-2\right)^2+\left(0-4\right)^2}=\sqrt{20}\Rightarrow BC^2=20\)

Xét tam giác ABC có: \(\hept{\begin{cases}AB=AC\\AB^2+AC^2=BC^2\left(=20\right)\end{cases}}\)

=> Tam giác ABC vuông cân tại A

=> đpcm

9 tháng 2 2021

giao điểm của d1 với d2 là : y=3x-2

                                              y=-1/3x+4/3

                                           <=> 3x -2 =-1/3+4/3

                                                    y=3x-2

                                               <=> x=1

                                                       y=1

vaaky giao điểm của d1 và d2 có tọa độ A(1,1)

tương tự ta được giao điểm của: d2 với d3 có tọa độ B (4,0)

                                                       d3 với d1 có tọa độ C(2,4)

độ dài AB là\(\sqrt{\left(Xa-Xb\right)^2+\left(Ya+Yb\right)^2}\)=\(\sqrt{\left(1-4\right)^2+\left(1-0\right)^2}\)=\(\sqrt{10}\)

tương tư ta được AC= \(\sqrt{10}\)

=> AB=AC ; d1 vuông góc d2 vì 3.(-1/3)=-1

=> tam giác ABC VUÔNG CÂN

 

a: d//d1

=>m-2=-m và m+7<>2m-3

=>m=1

b: d trùng với d2

=>m-2=-m^2 và m+7=-2m+1

=>m=-2 và m^2+m-2=0

=>m=-2

d: d vuông góc d4

=>-1/6(m+3)(m-2)=-1

=>(m+3)(m-2)=6

=>m^2+m-6-6=0

=>m^2+m-12=0

=>m=-4 hoặc m=3

c: Thay y=1/3 vào d3, ta được:

-2/3x+5/3=1/3

=>-2/3x=-4/3

=>x=2

Thay x=2 và y=1/3 vào (d), ta được:

2(m-2)+m+7=1/3

=>3m+3=1/3

=>3m=-8/3

=>m=-8/9

20 tháng 11 2023

a: loading...

b: Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}3x-2=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-x=2+1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=3\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{2}+1=\dfrac{5}{2}\end{matrix}\right.\)

Thay x=3/2 và y=5/2 vào (d3), ta được:

\(2m+3\cdot\dfrac{3}{2}-1=\dfrac{5}{2}\)

=>\(2m+\dfrac{7}{2}=\dfrac{5}{2}\)

=>\(2m=-1\)

=>m=-1/2

c: (d3): y=2m+3x-1

=>y=m*2+3x-1

Tọa độ điểm mà (d3) luôn đi qua là:

\(\left\{{}\begin{matrix}2=0\left(vôlý\right)\\y=3x-1\end{matrix}\right.\)

=>(d3) không đi qua cố định bất cứ điểm nào

10 tháng 12 2023

Tọa độ giao điểm của (d1) và (d3) là:

\(\left\{{}\begin{matrix}2x-1=-x+3\\y=-x+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=4\\y=-x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{4}{3}+3=\dfrac{5}{3}\end{matrix}\right.\)

Thay x=4/3 và y=5/3 vào (d2), ta được:

\(\dfrac{4}{3}\left(2n-1\right)+\dfrac{3}{2}=\dfrac{5}{3}\)

=>\(\dfrac{8}{3}n-\dfrac{4}{3}+\dfrac{3}{2}=\dfrac{5}{3}\)

=>\(\dfrac{8}{3}n=\dfrac{5}{3}+\dfrac{4}{3}-\dfrac{3}{2}=\dfrac{3}{2}\)

=>\(n=\dfrac{3}{2}:\dfrac{8}{3}=\dfrac{3}{2}\cdot\dfrac{3}{8}=\dfrac{9}{16}\)

31 tháng 12 2015

d1xd2 : x +2 = -x -2 => 2x = -4 => x =-2 ; y =0    A( -2;0)

d2xd3 : -x -2 = -2x +2 => x = 4 => y= 6         B (4;6)

d1xd3 : x +2 = -2x +2 => 3x =0 => x =0  => y =2  C (0;2)

tính AB ; AC; BC sau đó dùng công thức Herong nhé .

31 tháng 12 2015

THI XONG RỒI CÒN RA ĐỀ LÀM GÌ THẾ

29 tháng 10 2023

Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Thay x=1 và y=2 vào (d1), ta được:

\(\left(m^2-1\right)+m^2-5=2\)

=>\(2m^2=8\)

=>\(m^2=4\)

=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)