Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a-1=x2;b-1=y2;c-1=z2 với x,y,z>0. Bất đẳng thức cần chứng minh trở thành
\(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(y^2+1\right)\left(x^2+1\right)+1\right]}\)
áp dụng bđt Cauchy-Schwarz ta có \(x+y\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\Rightarrow x+y+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+z}\left(1\right)̸\)
\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+1}\cdot\sqrt{z^2+1}\)(2)
kết hợp (1) và (2) ta có \(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]}\)
vậy \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\left(đpcm\right)\)
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)
\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
Ap dung bo de : \(\sqrt{x-1}+\sqrt{y-1}\le\sqrt{xy}\left(x,y\ge1\right)\) (1)
(1) <=> \(2\sqrt{\left(x-1\right)\left(y-1\right)}\le\left(x-1\right)\left(y-1\right)+1\) (dung theo AM-GM)
Ta co \(VT\le\sqrt{ab}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}=VP\)
Dau = xay ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\\left(ab+1\right)\left(c-1\right)=1\end{cases}}\)
Trước hết, ta đi chứng minh bổ đề: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(*) (với \(p,q\ge1\))
Thật vậy: (*)\(\Leftrightarrow\left(\sqrt{p-1}+\sqrt{q-1}\right)^2\le pq\) \(\Leftrightarrow\left(p-1\right)+\left(q-1\right)+2\sqrt{\left(p-1\right)\left(q-1\right)}\le pq\)\(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(pq-p-q+1\right)+1\) \(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(p-1\right)\left(q-1\right)+1\)
Bất đẳng thức cuối đúng theo bất đẳng thức AM - GM vì \(\left(p-1\right)\left(q-1\right)+1\ge2\sqrt{\left(p-1\right)\left(q-1\right).1}=2\sqrt{\left(p-1\right)\left(q-1\right)}\)
Như vậy, ta đã chứng minh được bất đẳng thức phụ: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(với \(p,q\ge1\))
Áp dụng vào bài toán, ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{ab}+\sqrt{c-1}\)\(=\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)(q.e.d)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\ab\left(c-1\right)=1\end{cases}}\)