Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^3=14+3\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right)\)
\(A^3=14+3\sqrt[3]{49-50}.A\)\(\Leftrightarrow\)\(A^3=14-3A\)
\(\Leftrightarrow\)\(A^3+3A-14=0\)\(\Leftrightarrow\)\(A\left(A^2-4\right)+7\left(A-2\right)=0\)
\(\Leftrightarrow\)\(A\left(A-2\right)\left(A+2\right)+7\left(A-2\right)=0\)
\(\Leftrightarrow\)\(\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Leftrightarrow\)\(A=2\) ( do \(A^2+2A+7=\left(A+1\right)^2+6>0\) )
Ta có: A = \(\sqrt[3]{1+6-5\sqrt{2}}+\sqrt[3]{1+6+5\sqrt{2}}\)
\(=\sqrt[3]{1-3\sqrt{2}+6-2\sqrt{2}}+\sqrt[3]{1+3\sqrt{2}+6+2\sqrt{2}}\)
\(=\sqrt[3]{\left(1-\sqrt{2}\right)^3}+\sqrt[3]{\left(1+\sqrt{2}\right)^3}\)
\(=1-\sqrt{2}+1+\sqrt{2}\)
\(=2\)
Vậy: A luôn là số tự nhiên
\(\sqrt[3]{7+\sqrt{50}}+\sqrt[3]{7-\sqrt{50}}\)
\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}+\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(\sqrt{3}+2+\sqrt{7-4\sqrt{3}}=\sqrt{3}+2+\sqrt{4-2.2\sqrt{3}+3}\)
=\(\sqrt{3}+2+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+2+2-\sqrt{3}=4\)
=>ĐPCM
a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)
áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)
(so sánh bình phương 2 số sẽ ra nha)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
áp dụng công thức cho biểu thức A ta CM được
A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)
=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)
từ (1) và (2) => ĐPCM
b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)
và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)
từ (1) và (2)=>ĐPCM
(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)
MỜI BẠN THAM KHẢO
\(\sqrt{\sqrt{3}+2+\sqrt{7-4\sqrt{3}}}=\sqrt{\sqrt{3}+2+2-\sqrt{3}}=\sqrt{4}=2\)LÀ MỘT SỐ NGUYÊN
\(\sqrt{\sqrt{3}+2+\left|2\right|-\sqrt{3}}\)
<=>4 là số nguyên => t là số nguyên
Đặt: \(A=\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\)
\(A^3=7-\sqrt{50}+7+\sqrt{50}+3.\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right).\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\)\(A^3=14-3A\)
\(A^3+3A-14=0\)
\(A^3-2A^2+2A^2-4A+7A-14=0\)
\(A^2\left(A-2\right)+2A\left(A-2\right)+7\left(A-2\right)=0\)
\(\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Rightarrow A-2=0\) ( Do: \(A^2+2A+7>0\) )
\(\Rightarrow A=2\)
\(\Rightarrow A\) \(\in N\)
Cách khác nè :3
\(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}=\sqrt[3]{1-3\sqrt{2}+3.2-2\sqrt{2}}+\sqrt[3]{2\sqrt{2}+3.2+3\sqrt{2}+1}=\sqrt[3]{\left(1-\sqrt{2}\right)^3}+\sqrt[3]{\left(\sqrt{2}+1\right)^3}=1-\sqrt{2}+\sqrt{2}+1=2\)Vậy , biểu thức trên là một số tự nhiên .