Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có thành phần abc trong số abcabc được lặp lại 2 lần để tạo ra số này. Ta có ví dụ như thành phần 123 lặp lại 2 lần tạo nên số trên thành số 123123 giống như số trên và kết quả khi chia cho 143 là chia hết, kết quả là 861. Từ một ví dụ đó, ta suy ra rằng số abcabc hoàn tòan có thể chia hết cho 143.
P/S: Chúc bạn hok tốt !!!
ta có: abcabc = abc x 1000 + abc = abc x 1001
Ta thấy : 1001 chia hết cho 143
=> abc x 1001 chia hết cho 143
=> abcabc chia hết cho 143
HOK TOT
Ta có:
abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
abcabc = 1000 x abc + abc
= 1001 x abc = 143 x 7 x abc = 91 x 11 x abc = 77 x 13 x abc
=> abcabc chia hết cho 7, 11, 13
Ta có :
abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1)
= abc x 1001
= abc x 7 x 11x13
vậy abcabc là tích của abc x 7 x11x13 => abcabc chia hết cho 7,11,13
Ta có :
abcabc = abc000 + abc
abcabc = abc x 1000 + abc
abcabc = abc x ( 1000 + 1 )
abcabc = abc x 1001
abcabc = abc x 7 x 11 x 13
Vạy số abcabc là tích của abc và 7 , 11 và 13 nên abcabc chia hết cho 7 , 11 , 13
k cho mình nah Nguyễn Thu Hoai
Ta có : abcabc=1000xabc+abc=(1000+1)xabc=1001xabc
Vì 1001 chia hết cho 11 và 13
=> 1001xabc chia hết cho 11 và 13
=> abcabc chia hết cho 11 và 13
Vậy bài toán được chứng minh
Có gì thì tk và kết pn vs mik nha !!!
\(\overline{abcabc}=\overline{abc}\times1001⋮13\)
Ta có:
abcabc = abc x 1000 + abc = abc x 1001 = abc x 7 x 11 x 13 chia hết cho 7; 11 và 13
Chứng tỏ ...
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
Suy ra: abcabc chia hết cho 7, cho 11 và cho 13