Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\left(5n+1,20n+3\right)\)\(=d\)\(\left(d\in N\right)\)
\(\Rightarrow\hept{\begin{cases}5n+1:d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}4.\left(5n+1\right):d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}20n+4:d\\20n+3:d\end{cases}}\)
\(\Rightarrow\left(20n+4\right)-\left(20n+3\right):d\)
hay 1 : d => \(d\inƯ\left(1\right)\)
Mà Ư(1) = {-1;1} => d \(\in\){-1;1}
Vì d là lớn nhất nên d = 1 hay \(\left(5n+1,20n+3\right)=1\)
=> 5n+1 và 20n+3 là 2 số nguyên tố cùng nhau
Vậy \(\frac{5n+1}{20n+3}\)là phân số tối giản với mọi số tự nhiên n
Dấu chia hết mk viết là dấu chia,ủng hộ mk nha !!!
Gọi d = ƯCLN(5n+1, 20n+3) (d thuộc N*)
=> 5n+1 chia hết cho d; 20n+3 chia hết cho d
=> 4.(5n + 1) chia hết cho d; 20n+3 chia hết cho d
=> 20n+4 chia hết cho d; 20n+3 chia hết cho d
=> (20n+4) - (20n+3) chia hết cho d
=> 20n + 4 - 20n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(5n+1, 20n+3) = 1
=> phân số 5n+1/20n+3 tối giản (đpcm)
Chú ý: phân số tối giản là phân số có ƯCLN của tử và mẫu = 1
Ủng hộ mk nha ^_-
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
Với n chẵn ta thấy tử số phân số trên chẵn
Mà mẫu số lẻ
Nên hiển nhiên phân số trên tối giản
Với n lẻ, làm tương tự
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
a) d= ƯCLN (3n + 1; 5n + 2)
=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d
=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d
=> 15n + 6 và 15n + 5 chia hết cho d
=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1
=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
Gọi d là ƯCLN(2n-1;8n-3)
ta có 2n-1\(⋮\)d;8n-3\(⋮\)d
=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d
=>8n-4\(⋮\)d;8n-3\(⋮\)d
=>[(8n-4)-(8n-3)]\(⋮\)d
=>[8n-4-8n+3]\(⋮\)d
=>-1\(⋮\)d
=>d=1
Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)
Gọi d là UCLN(2n-1;8n-3)
=>2n-1 chia hết cho d và 8n-3 chia hết cho d
=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d
=>8n-4 chia hết cho d và 8n-3 chia hết cho d
=>8n-4-8n+3 chia hết cho d
=>-1 chia hết cho d =>d=1
=>điều phải chứng minh
Gọi d là ước chung lớn nhất của 5n + 1 và 20n + 3
\(\Rightarrow\)\(5n+1⋮d\); \(20n+3⋮d\)
\(\Rightarrow\)\(4.\left(5n+1\right)⋮d\); \(20n+3⋮d\)
\(\Leftrightarrow\)\(20n+4⋮d\); \(20n+3⋮d\)
\(\Rightarrow20n+4-\left(20n+3\right)⋮d\)
Hay \(1⋮d\Rightarrow d=1\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ nha !!!