Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
Bài 2 :
Ta có :
\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )
\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\) ( 3 )
Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được :
\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)
\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)
Theo đề bài thì \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)
Thấy đúng thì tk nka !111
Bài 3:
ta có : \(a^4+b^4\ge2a^2b^2\)
Cộng \(a^4+b^4\) vào 2 vế ta được:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)
\(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)
mà theo bài thì \(a+b>1\)\(\Rightarrow dpcm\)
TK MK NKA !!!
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
ta có: a^2+3< a^2+c^2+4
=> a^2/(a^2+3) >= a^2/(a^2+c^2+4) (1)
tương tự c^2/(c^2+1) >= c^2/(a^2+c^2+4) (2)
b^2/(b^2+2) >=0 (3)
4/(a^2+c^2+4) = 4/(a^2+c^2+4) (4)
Lấy (1)+(2)+(3)+(4) ta đk điểu phải chứng minh
lớn hơn hoặc = bạn nhé dấu = xáy ra khi a=b=c=0