Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x-y+z=0\)
\(\Rightarrow\left(x-y+z\right)^2=0
\)
\(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
\(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
\(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
\(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
\(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
\(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
Vậy: \(xy+yz-xz\ge0\)
x2=yz => \(\frac{x}{y}=\frac{z}{x}\)
\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
áp dụng ... ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)
\(\frac{x}{y}=1\Rightarrow x=y\)
\(\frac{z}{x}=1\Rightarrow z=x\)
=>x=y=z
Ta có x2=yz nên x/y=z/x(1)
y2=xz nên x/y=y/z(2)
z2=xy nên z/x=y/z(3)
Từ 1,2,3 suy ra x/y=z/x=y/z(4)
áp dụng t/c dãy tỉ số bằng nhau vào 4 có
x/y=z/x=y/z=x+y+z/x+y+z
vì x, y,z khác 0 nên x+y+z Khác 0
suy ra x+y+z/z+x+y=1
suy ra x/y=z/x=y/z=1
suy ra x=y; x=z; y=z
C2 :
Từ x2=yz⇒xz=yx(1)
Từ y2=xz⇒yx=zy(2)
Từ z2=xy⇒zy=xz(3)
Từ (1) , (2) và (3) ⇒xz=yx=zy
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
xz=yx=zy=x+y+zz+x+y=1
Khi đó : xz=1⇒x=z
yx=1⇒y=x
zy=1⇒z=y
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Ta có :x2 = yz , y2 = xz , z2 = xy
=> x2.y2.z2=yz.xz.xy
=>x2.y2.z2=y2.z2.x2
=>xyz=yxz
=> x=y=z
Lớp 7 hơi khó, ít nhất cũng cần hẳng đẳng thức mở rộng của lớp 8:
\(x-y+z=0\Leftrightarrow\left(x-y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=0\)
\(\Leftrightarrow xy+yz-xz=\frac{\left(x^2+y^2+z^2\right)}{2}\)
Mà \(x^2+y^2+z^2\ge0\) \(\forall x;y;z\Rightarrow xy+yz-xz\ge0\)
Lời giải:
Khi $x-y+z=0\Rightarrow y=x+z$. Thay vào biểu thức $xy+yz-xz$ thì:
$xy+yz-xz=x(x+z)+(x+z)z-xz=x^2+xz+z^2=x^2+\frac{xz}{2}+\frac{xz}{2}+\frac{z^2}{4}+\frac{3}{4}z^2$
$=(x+\frac{z}{2})^2+\frac{3}{4}z^2$
Dễ thấy $(x+\frac{z}{2})^2\geq 0; \frac{3}{4}z^2\geq 0$ với mọi $x,y,z$ nên $xy+yz-xz\geq 0$
Ta có đpcm.
Đặt x2 = yz (1) ; y2 = xz (2) ; z2 = xy (3)
Từ (1) => z= x2/y. Từ (2) => z = y2/x => x2/y = y2/x => x3 = y3 => x = y (*)
Tương tự : Từ (1) => y =x2/z. Từ (3) => y = z2/x => x2/z = z2/x => x3 = z3 => x = z(**)
Từ (*) và (**) suy ra x = y = z